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Abstract

In this deliverable we shall consider the problem of rare event simulation on
stochastic hybrid processes. We will discuss how a Sequential Monte Carlo sam-
plers formulation of the existing Interacting Particle System algorithm found
in [14] can be implemented and how this can benefit from a trans-dimensional
Markov Chain Monte Carlo simulation step, in order to achieve rare events
estimators of lower variance. The aim is to achieve a simulation speed-up even-
tually by using less particles that explore the state space more efficiently in areas
of lower probabilities.
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1 Introduction

In this deliverable we shall consider the problem of using rare events simulation
for a continuous time stochastic hybrid process in the context of estimating
conflicts or collision risk. We will entirely focus on the methodological aspects
when Sequential Monte Carlo (SMC) [16, 17, 23] is used to estimate the risk
factors of the continuous state part enters some rare set, which represents the
collision or conflict. As much work has been done on implementing generic
SMC algorithms for the particular application, [9, 12, 8] we shall propose an
algorithmic setting that can be used in the same context and for the present
not discuss any consideration regarding the application.

In the applied probability literature, particle implementations of genealogical
and branching interacting processes, which admit a Feynman-Kac (FK) flow
representation [16], have been used to estimate low probabilities (∼ 10−10 or
less) in [20] and [21] respectively. In Cérou et al [14] these results have been
generalised for the case of using strong Markov continuous time processes. The
authors present a generic Interacting Particle System algorithm (IPS), prove
convergence and provide a Central Limit Theorem (CLT).

The generic algorithm of [14] has been extended for stochastic hybrid sys-
tems in [28, 29] by employing advanced Importance Sampling (IS) techniques.
These extensions have been applied successfully at complex Air Traffic Manage-
ment problems in [9, 11]. In this deliverable we aim to give a SMC samplers
interpretation of the methodology found in [14], which has first appeared in
[27] and propose a suitable extension, which uses a reversible jump Markov
Chain Monte Carlo (MCMC) simulation step [25, 24]. Although the algorithm
we propose is essentially different than [14], the computational tools developed
in [11, 9, 28, 29] can be trivially reapplied. Therefore, this alternative algo-
rithm will be easy to implement and applied at the same complex Air Traffic
Management problems.

In the context of iFly objectives this deliverable contains extensions and
modifications of the algorithm proposed in iFly deliverable D7.2e [10], so that
trans-dimensional MCMC simulation can be used along with the IPS algorithm
of D7.2e [10]. Although in our approach we shall use a slightly different frame-
work based on SMC samplers [17, 18] and propose an alternative problem formu-
lation so that MCMC steps can be implemented, we emphasise that the specific
routines and methodological developments D7.2e [10] can be reapplied trivially.

The organisation of the rest of the deliverable shall be as follows. In Section
2 the basic principles of using Sequential Monte Carlo Samplers for rare event
estimation are discussed. In Section 3 we formulate the problem and in Section
4 we propose a generic algorithmic solution. In Section 5 we discuss specific
implementation issues related to stochastic hybrid systems and in Section 6
we outline some open research issues. Finally, in Section 7 we provide a few
concluding remarks.
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2 SMC Samplers for Rare Events Simulation

In this section we shall briefly describe the basic principles of using Sequential
Monte Carlo Samplers for rare event estimation. The ideas we propose are
based on the work in [27]. We shall not present any details on the general
SMC samplers methodology, as this lies beyond the scope of this deliverable,
but instead highlight the basic features of the approach. We refer the interested
reader to [17] and [18] for a complete treatment on the topic.

In order to obtain estimates of the probability of a rare event, we will define
a sequence of distributions defined over the same path space of an appropriate
discrete time Markov process. Note that this formulation is slightly different to
traditional SMC algorithms found in [23] and are also known as Particle Filters
(PF) in the context of optimal state estimation, where inference is performed
recursively on spaces of increasing dimension. The difference lies in that rhe first
of the distributions corresponds to the law of the Markov chain up to a stopping
time and subsequent distributions are distorted according to a sequence of indi-
cator function potentials, which ultimately cause the distributions of the path
to concentrate their mass on the rare events of interest. This iterative approach
makes it possible to obtain weighted samples with weights of low variance from
the target distribution from which it would otherwise be extremely difficult to
sample. Then, we can estimate the rare event probabilities as estimates of the
normalisation constants via SMC.

The SMC samplers approach can improve the sample diversity dramatically
relative to that of the samples obtained by methods which iteratively extend the
path and apply importance resampling in the context of [23]. This is due to the
well known degeneracy of the resampling step, which after a few iterations causes
the particle samples to become more dependent to a very small set of particles
or even a single particle instead of most of the population at the beginning of
the path. The result is that after a few iterations the particle approximation
of the path tends to deteriorate and the variance increases in a geometric rate.
In the context of static parameter estimation this is well explained in [2] and
in the context of rare event simulation one can refer to [20]. Furthermore, as
noted by [3], if the transition kernel of the Markov chain admits heavy tails,
then rare events are likely to be driven by single large shocks rather than an
accumulation of small ones and, therefore working on the path space is likely to
produce much better results in such setting.

The law of the Markov process up to a stopping time is a trans-dimensional
distribution since the dimension of the state of interest is itself a random vari-
able. The general framework for trans-dimensional problems has been pre-
sented in the seminal work of P.J. Green in [25],[24] and a popular computa-
tional approach is that of reversible jump Markov Chain Monte Carlo simulation
(MCMC). In this deliverable, we aim to provide a straight forward extension
to the work of [27], by presenting appropriate trans-dimensional Metropolis-
Hastings (MH) kernels that can explore the space of varying dimension.
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3 Problem Formulation

3.1 Dynamical Model

Consider the bivariate stochastic process {Yt} = {(Xt, Θt)}t∈R+
defined on a

complete stochastic basis (Ω,F , F, P, T) with (Ω,F , P) being a complete proba-
bility space, and F being a right continuous filtration, i.e. a increasing sequence
of sub-σ-algebras of F . Let also (xt, θt) ∈ E′, where E′ = R

dx × M, with M

being a finite discrete set and denote E ′ = B(E′) as the Borel σ-algebra of E′.
We will assume that {(Xt,Θt)}t∈R+ is a switching diffusion varying according
to

dXt = a(Xt, Θt)dt + b(Xt, Θt)dWt, (1)

Pθt+δ|θt,xt
(θ|Θt = η,Xt = x) = ληθ(x)δ + o(δ), ∀η 6= θ (2)

where Wt is a Wiener process in R
dx independent of {Θt}t∈R+ and the initial

condition (x0, θ0) can be both deterministic or distributed according to η0 ×µ0.
Assumption (A1) We will assume that η0, µ0,a, b, λi,j are such that (1-2)
admits an a.s. pathwise unique solution and {Yt} is a strong Markov process.

This stochastic hybrid model was adopted in the work of [28] and [29], and in
the references within one can find conditions on η0, µ0, a, b, λi,j for which (A1)
is true.

3.2 Advanced Sampling Methods for Stochastic Hybrid
Systems

In practice in order to sample from {Yt} one can adopt various sampling schemes.
For the diffusion a popular choice for dicretising in time is the Euler discretisa-
tion

xtj+1 = xtj
+ a(xtj

, θtj
)h + b(xtj

, θtj
)(Wtj+1 − Wtj

),

where Wtj+1
−Wtj

∼ N (0, tj+1− tj). In [12] the authors implement this for the
algorithm of [14] to solve a complex Air Traffic Management problem, where
the aircrafts were modelled according to (1-2). The authors noted that a naive
implementation might suffer in the case of rare switchings between the modes of
θ. In [28] they proposed a solution by sampling a fixed number of particles for
each mode and using an Importance Sampling (IS) estimator with a proposal
that admitted more frequent switchings. This solution was further refined in
[11] and [29] by employing a Rao-Blackwellised approach and using IS proposals
whose discrete part consisted of an aggregation mode process of smaller discrete
state space. This was further refined in [9] with the use of importance switching
for the aggregation process. A summary of these refinements can be found in
iFly deliverable D7.2e [10].

Although we will not present this sampling approach here, throughout this
deliverable we shall assume that it is possible to use the advanced sampling
methods contained in these papers and especially in the most recent, [9]. Then
we shall be able to simulate a discrete time inhomogeneous Markov chain {Yn}n≥0 =
{(Xn, Θn)}n∈N+

that approximates {Yt}t∈R+
consistently with respect to the

size of the discretisation intervals. In addition, for the discrete Markov chain
{Yn}n≥0 we will use the same initial distribution η0 × µ0 as for the continuous
time process {Yn}n≥0.

6



We do not require that {Yn}n≥0 should be sampled directly from the law of
the Markov chain. This could be done indirectly using Importance Sampling
proposals assuming that the likelihood ratios involved are well defined. For the
rest of this deliverable we will be using mostly {Yn}n≥0 instead of its continuous
time counterpart, but having said this we emphasise that this does not alter the
underlying methodology critically and was this choice was adopted for the sake
of simplicity.

3.3 Trans-dimensional Rare Event description

For notational convenience, let E = R
dx and E = B(Rdx). We will consider the

rare events corresponding to the probability that the continuous part {Xt}t∈R+

of the Markov process {Yt}t∈R+
enters some rare set, T ⊂ E, before it next

enters some recurrent set, R,

Pη0(Xτ ∈ T ),

where the stopping time τ is defined as

τ = inf{s ∈ N
∗
+ : Xs ∈ R ∪ T }.

The set R is assumed to be a recurrent set and we also assume that R∩T = ∅.
This construction is required only to make the stopping time τ almost surely
finite, [31]. This framework corresponds to the classes of problems considered in
[14, 15]. Note that in the case where s ∈ R

∗
+ we obtain a similar definition of τ

for the continuous time process. Although in this paper we shall not explicitly
deal with this case, the continuous time problem formulation is very similar.

Here we illustrate that it is possible to employ our approach for solving
the same class of problem as the various multi-level splitting algorithms. We
employ a Feynman-Kac formulation which is very different to that used by [14].
In our case the flow is entirely synthetic, whereas the evolution of the flow is
fundamentally related to the dynamical structure of the chain of interest in the
previously proposed algorithm by [14].

We are interested in the possible paths of {X0:p}p≥0, which is the continuous
part of the discrete time Markov chain path {Y0:p}p≥0, starting somewhere in
the support of η0 and then evolving according to the law of {Yn}n≥0 until Xτ

eventually intersects with R∪ T . Assuming these paths of interest exist, let F
be the space defined as

F =

∞⋃

p=2

{p} × supp(η0) × (E\(R∪ T ))p−1 × R∪ T ,

where supp(ψ) denotes the support of a measure ψ and for notational conve-
nience we assume that the support of the initial distribution does not include
either the rare set nor the recurrent set, i.e.

supp(η0) ∩ (R∪ T ) = ∅.

It becomes apparent from this representation that computing Pη0(Xτ ∈ T ) is
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actually a trans-dimensional estimation problem since we have

Pη0(Xτ ∈ T ) = Pη0 ((τ, X0:τ ) ∈ F )

=

∞∑

p=2

∫

Ep

Pη0(X0:p ∈ dx0:p)IT (xp)

p−1∏

s=0

IE\( R∪T )(xs),

where we denote for any set B, the indicator function as IB(x) = 1 if x ∈ B
and IB(x) = 0 otherwise. Note that we are summing over trajectories X0:p of
all possible lengths. Also, to simplify presentation from now on we shall drop
the subscript of P.

In common with many techniques for solving this problem, we employ a
decreasing sequence of nested sets which concentrate themselves on the rare set
of interest:

T = TT ⊂ TT−1...T2 ⊂ T1. (3)

Our approach differs slightly in that we try to arrange these sets such that the
majority of paths reaching Tk before R also reach Tk+1 before R. Essentially
this means that the sets are somehow closer together than normal splitting
approaches. For simplicity we construct a sequence of distributions which place
all of their mass on one of these sets, although it is easy to extend this setting
to situations in which other smoother potential functions instead of IT (xp) are
employed to produce better results as done in [20, 27]. We define our synthetic
distributions1 as

πk(Y1:τk
∈ dy1:τk

) = P(X1:τk
∈ dx1:τk

, Θ1:τk
= θ1:τk

|Xτk
∈ Tk)

=
1

Zk

P(X1:τk
∈ dx1:τk

, Θ1:τk
= θ1:τk

, Xτk
∈ Tk),

with the stopping times being

τk = inf{s : Xs ∈ Tk ∪ R}

and the normalising constant

Zk = P(Xτk
∈ Tk).

Given that we are able to obtain samples from this sequence of distributions,
we can obtain an estimate of the ratio of normalising constants. These can be
done by recursively estimating the product of ratio of normalising constants.

4 Generic Algorithm

In this section we present the algorithm found in [27] as a path based reinterpre-
tation of multi-level splitting using SMC samplers framework found in [17, 18].
The flexibility of this sampling scheme makes it possible to apply much more
general sampling strategies. In the remainder of this deliverable we shall pro-
pose how the algorithm of [27] can include a reversible jump MCMC step and
discuss how some advanced sampling strategies found in [11] and [29] can be
incorporated to this approach.

1Note that are considering the part of the chain {Yn} for n ≥ 1. This is a simplification

ignores the effect of η0 ×µ0 and considers that Y0 as deterministic. This was done to simplify

presentation and in practice is not a problem.
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4.1 SMC Sampler algorithm of [27]

We will present an SMC algorithm that approximates πk by a set of parti-
cles obtained by simulation. We denote the particle set at level k as Ξk ={

Ξ
(i)
k

}N

i=1
, where each particle Ξ

(i)
k =

(
τ

(i)
k , X

(i)

1:τ
(i)
k

,Θ
(i)

1:τ
(i)
k

)
. Also, we refer to

{
W

(i)
k ,Ξ

(i)
k

}N

i=1
as the weighted particle set, where W

(i)
k is the weight of the

i-th particle. At level k we will assume that
{

W
(i)
k−1, Ξ

(i)
k−1

}N

i=1
is available and

the weighted particle set is updated recursively. The particle sets at each level
can be thought of evolving through the following recursion:

· · · −→ Ξk−1
resampling

−→ Ξ̂k−1
reversible jump

−→ Ξ̃k−1
extend path

−→ Ξk −→ · · ·

where Ξ̂k−1, Ξ̃k−1 follow the same notation as Ξk.
To monitor the performance of the algorithm we define the effective sampling

size (ESS) at level k:

ESSk =

(
N∑

i=1

(
W i

k

)2

)−1

,

where ESSk is always less than N and can be interpreted as the number of
perfect samples from the target distribution that would lead the same estimator
variance.

We proceed by describing the algorithm as follows:

Algorithm 1 SMC Sampler for rare event simulation:

Initialise at k = 1 an ensemble of N weighted path-particles:

for i = 1, ...N :

• Sample the path Ξ
(i)
1 from the law of the discretised Markov chain

until it hits either T1 or R, at stopping time τ
(i)
1 , i.e. Ξ1 ={

τ
(i)
1 , X

(i)

1:τ
(i)
1

, Θ
(i)

1:τ
(i)
1

}N

i=1

.

• Set W
(i)
1 = IT1(X

(i)

τ
(i)
1

)

• Normalise weights W
(i)
1 =

W
(i)
1

N∑
j=1

W
(j)
1

end for
Proceed for k > 1

for k = 2, ..., T :

1. Resample from
{

W
(i)
k−1, Ξ

(i)
k−1

}N

i=1
if ESSk < Nthresh, to obtain the

weighted particle set
{

Ŵ
(j)
k−1, Ξ̂

(j)
k−1

}N

j=1
, where Ŵ

(i)
k−1 = 1

N
and Pr(j =

ϕ(i)) = W
(ϕ(i))
k−1 , where ϕ(i) is determined from the resampling scheme.

If resampling is not used, set
{

Ŵ
(i)
k−1, Ξ̂

(i)
k−1

}N

i=1
=

{
W

(i)
k−1, Ξ

(i)
k−1

}N

i=1
.
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2. Apply a reversible jump M-H kernel, K̃k−1, of invariant distribution

πk−1 to each path-particle Ξ̂
(i)
k−1:

for i = 1, ..., N :
apply a reversible jump move to the i-th path-particle sample

Ξ̃
(i)
k−1 ∼ K̃k−1(Ξ̂

(i)
k−1, ·).

end for

3. Extend the path if necessary until it hits either Tk or R, at

stopping time τ
(i)
k and reweight the particles:

for i = 1, ..., N :

I) Extend the i-th path-particle Ξ̃
(i)
k−1 to get Ξ

(i)
k as follows

Ξ
(i)
k ∼ Kk(Ξ̃

(i)
k−1, ·),

where Kk(Ξ̃
(i)
k−1, Ξ

(i)
k ) follows from simulating

(
X

(i)

τ̃
(i)
k−1+1:τ

(i)
k

, Θ
(i)

τ̃
(i)
k−1+1:τ

(i)
k

)

using the transition law of the chain {Yn}n≥1 from time τ̃
(i)
k−1 to

τ
(i)
k using

(
X̃

(i)

τ̃
(i)
k−1

, Θ̃
(i)

τ̃
(i)
k−1

)
as the initial condition and then augmenting

the new simulated path with the previous path

(
X̃

(i)

1:τ̃
(i)
k−1

, Θ̃
(i)

1:τ̃
(i)
k−1

)
.

II) Weight the particle ensemble using W
(i)
k = Ŵ

(i)
k−1ITk

(X
(i)

τ
(i)
k

).

end for

III) Normalise weights W
(i)
k =

W
(i)
k

N∑
j=1

W
(j)
k

.

end for

Estimate the quantity of interest as p⋆ =
T∏

k=1

Ẑk with Ẑk = 1
N

N∑
i=1

W
(i)
k .

Algorithm 1 is identical to the one found in [27] apart from step 2, which
has been added. It has to be noted that resampling should be avoided if not
necessary. This can be done by monitoring the effective sampling size (ESS)
and resampling only when the ESS drops beneath a certain preset threshold,
i.e. ESSk < Nthresh. For example one could set Nthresh = N

2 ; for more details
see [23]. In addition, we refer the reader to [22] for a comparison of various
resampling schemes and to [30] for general details on the ESS and resampling.

For convenience we have assumed that Kk is the law of the discretised
Markov chain conditioned upon hitting Tk before R. One might wish to con-
sider situations in which the proposal kernels, {Kk}k≥1 are able to modify that
part of the path which has been proposed thus far in addition to extending
it. This can be relatively simple to accomplish, and simply leads to a slightly
more complex weight expression. Similarly if an IS proposal were to be used the
weights should be modified according to the Importance Ratio. In the interests
of clarity we have presented only the simpler case here. IS will be discussed
further in Section 5.1.
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4.2 Generic Reversible Jump moves for K̃k

In the algorithm above K̃k has been introduced to improve the sample diversity.
In this section we shall describe how dimension-changing moves can be imple-
mented by Reversible Jump Metropolis Hastings (MH) kernels K̃k. We remind

the reader that the invariant distribution πk(Y1:τk
) of K̃k depends explicitly on

τk. We propose first to update each particle τ̂
(i)
k , Ξ̂

(i)
k conditional upon using a

combination of birth, death and update moves using the reversible jump MCMC
algorithm of [24, 25]. This is achieved using the following simple Metropolis-
Hastings (MH) algorithm [32]. In contrast with presentation so far, we shall be

using Y
(i)

1:τ
(i)
k

to denote

(
X

(i)

1:τ
(i)
k

, Θ
(i)

1:τ
(i)
k

)
for the sake of simplicity.

The procedure is as follows

Algorithm 2 Reversible Jump MCMC:

1. At level k we have the particle set Ξ̂k =

{
τ̂

(i)
k , X̂

(i)

1:τ
(i)
k

, Θ̂
(i)

1:τ
(i)
k

}N

i=1

2. for i = 1, ..., N:

Sample u ∼ U [0, 1].

• if u ≤ b
τ̂
(i)
k

: Carry out a birth move, set τ̃
(i)
k = τ̂

(i)
k + 1 and

insert a new state in the path of Ŷ
(i)

1:τ̂
(i)
k

to obtain Ξ̃
(i)
k , where

Ξ̃
(i)
k =

(
τ̃

(i)
k , X̃

(i)

1:τ̃
(i)
k

, Θ̃
(i)

1:τ̃
(i)
k

)
.

• elseif u ≤ b
τ̂
(i)
k

+ d
τ̂
(i)
k

: Carry out a death move, set τ̃
(i)
k =

τ̂
(i)
k −1 and kill an existing state of the path of Ŷ

(i)

1:τ̂
(i)
k

to

obtain Ξ̃
(i)
k .

• else: Carry out an update move, set τ̃
(i)
k = τ̂

(i)
k and generate

an updated version of the path of Ŷ
(i)

1:τ̂
(i)
k

to obtain Ξ̃
(i)
k .

end for

3. Iterate step 2 κ times for each new particle set.

The birth, death and terms derived above can be thought of as ratios between
the distribution over the newly proposed state of the chain and the current
state. These terms must also ensure reversibility and the dimension-matching
requirement for reversible jump MCMC, [24],[25]. In order to satisfy the detailed
balanced condition one has to ensure that for any i, bi + di + ui = 1, where ui

is the update probability. For example, in practice one could set the birth
and death probabilities such that bτk

= dτk
= uτk

= 1/3. We will proceed
by presenting this simple reversible jump method, by considering separately
the birth, death, and update moves. We will be assuming that the current
state of the Markov chain is targeting the invariant distribution πk(Y1:τk

) and
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that appropriate proposal distributions qu(y, ·) and qb(·) can be designed in the
context of Section 3.2.

Birth move:
A birth move is carried out with probability b

τ̂
(i)
k

. The new candidate state

is constructed by sampling a location uniformly in the interval {1, ..., τ̂
(i)
k }, i.e.

J ∼ U{1, ..., τ̂
(i)
k }, and sampling Ỹ ∗ ∼ qb(·). The proposed candidate (τ̂

(i)
k +

1, Ŷ
(i)
1:J−1, Ỹ

∗, Ŷ
(i)

J:τ̂
(i)
k

) is accepted with probability

αbirth = min{1,
πk(Ŷ

(i)
1:J−1, Ỹ

∗, Ŷ
(i)

J:τ̂
(i)
k

)d
τ̂
(i)
k

+1

πk(Ŷ
(i)

1:τ̂
(i)
k

)qb(Ỹ ∗)b
τ̂
(i)
k

}. (4)

.
Death move:
With probability d

τ̂
(i)
k

, we propose a death move; Sample J ∼ U{1, ..., τ̂
(i)
k }.

The candidate state (τ̂
(i)
k − 1, Ŷ

(i)
1:J−1, Ŷ

(i)

J+1:τ̂
(i)
k

), is accepted with probability

αdeath = min{1,
πk(Ŷ

(i)
1:J−1, Ŷ

(i)

J+1:τ̂
(i)
k

)qb(ŶJ )b
τ̂
(i)
k

−1

πk(Ŷ
(i)
1:τ̂k

)d
τ̂
(i)
k

}. (5)

Update move:
With probability 1 − b

τ̂
(i)
k

− d
τ̂
(i)
k

, we propose a standard fixed dimensional

move where we could update all or a subset of the components Ŷ
(i)

1:τ̂
(i)
k

using

Metropolis-Hastings or Gibbs moves. Blocking some of the variables can im-
prove the mixing time of the Markov chain. In our simple Metropolis-Hastings

scheme sample J ∼ U{1, ..., τ̂
(i)
k } and then Ỹ ∗

J ∼ qu(Ŷ
(i)
J , ·) then the candidate

(τ̂
(i)
k , Ŷ

(i)
1:J−1, Ỹ

∗
J , Ŷ

(i)

J+1:τ̂
(i)
k

) is accepted with probability

αupdate = min{1,
πk(Ŷ

(i)
1:J−1, Ỹ

∗
J , Ŷ

(i)

J+1:τ̂
(i)
k

)qu(Ỹ ∗
J , Ŷ

(i)
J )

πk(Ŷ
(i)

1:τ̂
(i)
k

)qu(Ŷ
(i)
J , Ỹ ∗

J )
} (6)

Under weak assumptions on the model, the Markov chain generated by
this transition kernel will be irreducible and aperiodic and hence will gener-
ate asymptotically samples from the target distribution πk(Y1:τk

).
The proposed algorithm is related to the Resample Move (RM) algorithm

in [4] and the one in [1] both used for parameter estimation. Compared to [4]
our approach is different as it incorporates reversible jumps to enable variable
dimension moves. Compared to [1] the difference of our algorithm lies in the
problem formulation and application used it is used for. In this sense the draw-
backs illustrated in [1] regarding the convergence of the algorithm are relevant
only for estimating static parameters of state space models and for rare event
estimation.
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5 Implementation Details

This approach, which was initiated in [27], can be developed further. In partic-
ular, the sequence of distributions could be refined to make it more effective for
the case of stochastic hybrid systems. More specifically practical considerations
can lead to design of appropriate proposal distributions for both Kk and K̃k.
In the previous section we presented the algorithm in a general format so that
it can be used generically for a variety of dynamical models. In this section we
we will consider the class of models defined by (1)-(2) and briefly explain how
earlier work in D7.2e [10] can be reused in this setting.

5.1 Importance sampling and aggregation of modes

In the exposition of Algorithm 1 Kk was assumed to be the law of the discretised
Markov chain conditioned upon hitting Tk before R. In [11, 9, 28, 29] the authors
use Importance sampling and Rao-Blackwellisation to account for large discrete
state spaces and rare switchings that may be critical for the performance of a rare
event estimator. The work in the previously mentioned papers is summarised
in iFly deliverable D7.2e [10]. The same issues apply also for Algorithm 1 and
implementing these extensions is part of specifically designing Kk and modifying
the expression of the weights in step 3 II of Algorithm 1 accordingly.

We proceed by sketching how the improvements of D7.2e [10] can be incor-
porated in our approach. The methodology is almost identical. Steps 1-3 in
Section 7 of D7.2e are essentially equivalent with a recursion of step 3 followed
by step 1 of Algorithm 1. The only difference is that in our case we store and

perform a recursion on the complete path Y
(i)
1:τk

rather than the marginals Y
(i)
τk

so that step 2 of Algorithm 1 can be implemented. Therefore if the Hierarchi-
cal Hybrid IPS is modified to store and propagate the complete genealogy of
the particles and is then followed by Algorithm 2 we will obtain an approach
equivalent to the one described in this deliverable.

Finally one might wish to consider situations in which the proposal kernels,
{Kk}k≥1 are able to modify that part of the path which has been proposed thus
far in addition to extending it. This can be relatively simple to accomplish, and
simply leads to a slightly more complex weight expression. For more details,
see [10].

5.2 Designing the Reversible Jump-MH kernel K̃k

The main benefit of the RJMCMC move is to explore the path space of Y1:τk

both in time and in space so that the particles stay in more promising regions,
where the transitions between level sets can be made more likely. In Section
4.2 we presented RJMCMC in the most generic way. Here we will provide
recommendations for designing qb, qu both for the presented general case as
well as for the specific problem of rare event estimation after taking into account
some practical considerations.

5.2.1 Generic case: exploring the path space of Y1:τk

In the update step of Algorithm 2 the approach is as in traditional MCMC
rejuvenation moves presented in [4] for parameter estimation. In [4] the authours
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propose an algorithm like Algorithm 1 to perform joint filtering of fixed and
varying parameters, where K̃k consisted only of the update step (i.e. there were
no transdimensional birth and death moves). This is known in the literature as
the Resample Move (RM) Particle Fiter (PF). With reference to our problem,

the purpose of qu is to modify the trajectory of Ŷ
(i)
1:τk

by proposing moves in

(E′)
τk

so that an accepted change can bridge the gap between πk and πk+1 by
propagating at level k + 1 a more diverse particle population. For the context

of rare events estimation this means that the previous simulated path Ŷ
(i)
1:τk

is
modified so that at level k + 1 the probability of the particles reaching Tk+1 is

increased. qu can be a symmetrical kernel with the centre being Ŷ
(i)
1:τk

and the
bandwidth being either constant or decreasing with level k. A Gaussian shaped
kernel can be used, but more choices are possible; for more details see [33].

As regards to the birth and death moves, it allows the exploration to be
made with respect to τk as well. The proposal distribution qb acts in a similar
manner to the proposal distributions of IS. With reference to the presentation

in Section 4.2, qb could be a low bandwidth kernel extending Ŷ
(i)
1:J−1, so that is

Ỹ ∗ very likely to hit level set TJ . The birth move will be accepted if Ŷ
(i)

τ̂
(i)
k

is

then more likely to be in Tk using an added intermediate step. It is more clear
now that the level sets need to be rather close for this approach to work.

5.2.2 Practical considerations for Rare Event Simulation

There are certain drawbacks when the approach of the previous section is used.
The first is that the memory requirements for storing Y1:τk

is not scalable with
the level number k, therefore T cannot be very large. In [4] a fixed lag technique
was proposed where instead only Yτk−L+1:τk

is renewed through the MH kernel,
where L > 0 and small. Even so, proposing new paths Yτk−L+1:τk

through some
modified proposal distributions qb, qu, would be useful if the SMC potential gk

was a function of Y1:τk
or Yτk−L+1:τk

. In our case in Algorithm 1 gk is given by

gk(Y1:τk
) = ITk

(Xτk
).

When using a potential with such a form (i.e. an indicator function) it is clear

that rejuvenating the path of Y
(i)
1:τk

will not contribute to the weights at all
unless we manually set J = τk for the death step, J = τk + 1 for the birth step
and J = τk for the update step. This solution seems suitable for the rare events
simulation problem we are considering. We propose to set J to these values for
each case and use

Ỹ ∗

τ
(i)
k

+1
∼ qb(Ŷ

(i)

τ
(i)
k

, ·),

Ỹ ∗

τ
(i)
k

∼ qu(Ŷ
(i)

τ
(i)
k

, ·),

as proposals for the birth and update cases respectively. Designing qb and qu

should follow in the same context as before only this time we modify only the
last part of the path, which is of particular interest given the form of gk.

When such a proposal mechanism is employed the MH kernel K̃k is no longer
ergodic. Note that in contrast to standard RJMCMC this is not required when
MH moves are used along with SMC [4]. The resulting particle approximation
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obtained will be still closer to πk(Y1:τk
) (e.g. when compared with a total

variation norm) than the case when K̃k is not used. Also, we suspect that the
structure of the distributions πk(Y1:τk

) may not vary significantly with τk and
we might often have

πk(Y1:τk
) ≈ πk(Y1:τk+1).

Hence the probability of having the reversible moves accepted will be reasonable.
Standard Bayesian applications of reversible jump MCMC usually do not enjoy
this property and it makes it more difficult to design fast mixing algorithms.

When standard SMC is used T is usually of an order ranging from 102−105

[23]. In this case κ = 1 should suffice when designing K̃k, i.e. we propose using
only a single MH step. In [10] the authors use T = 8. In that case, if RJMCMC
moves are used we would suggest κ to be larger ranging from 102 − 103.

6 Open Research Issues

Eventually the challenge to be addressed is to balance on the competing de-
mands on computational power of using a large number of particles and using
a large number of intermediate distributions. In this section we briefly out-
line a few other possible research directions that can provide extensions to our
approach, which might improve the performance of the algorithm.

6.1 Smooth potentials

In practice it might be very expensive to consider a dense sequence of nested
level sets for this approach to work. An alternative would be to use a smoother
potential function gk(x) instead of ITk

(x) in the expression of the weights in
step 3 II of Algorithm 1. The potential gk can be dependent to an increasing
parameter βk, which plays the role of an inverse temperature. Annealing can
be used so that as βk increases then resembles closer ITk

(x). For example gk(x)
can be defined as

gk(x) = (1 + exp(−βk(Vk(x) − ck)))
−1

,

where Vk is an arbitrary continuous function defined as

Vk :

{
Tk → [ck,+∞)

E\Tk → (−∞, ck]

Note that until now we have been using x = Xτk
as the argument of the level

potential gk. This is not restrictive and gk can be also modified as a function of
the previous path X1:τk

. In addition, the SMC sampler can use a more smooth
path sampling approach instead estimating the normalisation constants product
of estimators directly. For more details see [27].

6.2 Continuous time RJMCMC

In case πk is hard to compute, one could investigate more advanced reversible
jump methods found in [13] and [34] that might suit our problem in better
fashion. It is clear that continuous time formulation of Algorithm 2 might
resolve implementation issues related to having to use a the time discretised
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process {Yn}n≥0 explicitly in the problem formulation. Algorithm 1 can be
easily extended for the continuous time formulation. In addition employing a
Rao Blackwellisation for (1)-(2) can be combined with exact simulation algo-
rithms for continuous time processes [5, 6, 7], leading to a lower bias due to time
discretisation.

6.3 Adaptive selection of levels

An alternative multilevel splitting context that uses adaptive selection of the
sequence of distributions to be employed has been presented in [15]. It might
be worth investigating if this can be incorporated in the current approach and
combining adaptation of the level sets with the effective sample size of SMC.
Similar approaches have been used in Approximate Bayesian Computation for
problems in Biology [19].

6.4 Replacing RJMCMC steps by SMC sampling

Also a trans-dimensional SMC approach can be considered without the use of
MCMC [26]. Currently, this is a direction that is more useful to consider in the
long term as it would require a completely new analysis.

6.5 Theoretical Analysis

Although we have not performed a theoretical analysis of the algorithm pre-
sented here, it is possible to establish a broad range of theoretical results by the
application of the techniques found in [16]. Note that we can obtain a central
limit theorem using these techniques, and that it will have the form presented
in [18]. The resulting asymptotic variance of the estimates produced by the
algorithm presented here will be closely related to the mixing properties of the
proposal kernels used to move around the state space. Further analysis may
include establishing reasonable conditions under which the particle system is
stable, as well as to determine computable bounds upon the variance and bias
associated with the SMC algorithm presented above.

7 Conclusions

In this deliverable we have attempted to discuss how an SMC sampler with
trans-dimensional MCMC steps can be used for a rare events simulation problem
that is useful for conflict or collision risk assessment. Our aim is to use this
approach so that the generic algorithm can be implemented for this application
using earlier powerful tools developed in previous formulations of the problem.
Hopefully, this will lead to a more efficient simulation procedure that can use
less particles and achieve a significant speed up.
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