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Periodic Boundary Condition Based Simulation of Large Scale Airborne Self Sep-
aration Airspace

Abstract

In order to simulate a large 3D airspace with a very large number of airborne self separating
aircraft we make use of a Periodic Boundary Condition (PBC) consisting of a rectangular 3D
box. Infinitely many of these boxes are packing the 3D airspace, and in each 3D box a fixed
number N of aircraft is flying. Then only N aircraft have to be simulated in order to get hold on
the collision risk in a homogeneously dense 3D airspace. Although PBC is a common approach
in molecular dynamics simulation, little is known about choosing a sufficiently large PBC. In
this report we develop some requirements on the minimal size of the 3D box.

1 Introduction

In [1], a large 3D airspace with a very large number of airborne self separating aircraft have been
simulated by making use of a Periodic Boundary Condition (PBC) [4]. Imposing a proper PBC on
the 3D airspace eases the matter in the following way:

• Implicitly, it assumes that the aircraft in a 3D airspace are flying in a particular pattern
such that the 3D airspace can be partitioned into identically cells, and with identical aircraft-
trajectories evolving in each of these cells.

• Under this implicit assumption, it is sufficient to simulate the trajectories in only one cell,
and each time that one of the aircraft trajectories leaves this cell, it enters the same cell at
the opposite side of the cell.

The specific PBC cell used in [1] is a rectangular 3D box, infinitely many of them which are
packing a virtually infinite 3D airspace. In each 3D box, N airborne self separating aircraft are
flying. This way, one only needs to simulate N aircraft in one box, in order to mimic a simulation
of infinitely many aircraft in an infinite 3D airspace. In [1] the maximum number of aircraft that
have been simulated without running into computer memory problems was eight; hence in [1] N=8.
Subsequently, in [1] the size of the 3D box has been varied in order to vary the aircraft density in
the 3D airspace.

It is important to note that the collision probability of an aircraft in random traffic with PBC may
differ from that in random traffic without PBC. Fortunately this error can be made arbitrarily
small by making the sizes of the boxes sufficiently large.

Although the use of PBC is a well known approach in molecular dynamics simulation [4], little is
known about choosing a sufficiently large PBC cell. Therefore in [1] the size of the 3D box has
been chosen rather arbitrarily. In [1] it has been observed that sometimes a rare event happened
in the simulation which was due to the limited height of the 3D box. None of such events have
been observed that were caused by the limited width of the 3D box. Because events caused by the
limited size of the 3D box can properly be identified, the potential errors caused by a too small
sized 3D box can be kept under control [1]. Nevertheless we also want to develop proper theory
in order to better understand under which conditions the size of the 3D box is large enough. The
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objective of this report is to derive bounds on the size of the 3D boxes under the airborne self
separation concept considered in [1].

This report is arranged as follows. In Section 2 the use of PBC in dense random traffic airspace is
revisited with mathematical description. The notion of sufficiently large PBC cell is also introduced
in a very general set-up. In Section 3 and 4 a sufficiently large rectangular box is studied. For
some specific scenarios the minimum height of this rectangular box is derived in Section 3. And the
minimum width of this rectangular box is derived in Section 4. In Section 5 we illustrate the results
by some numerical evaluations. Section 6 contains some concluding remarks. BADA performance
data of several aircraft types has been used [5], details of which are given in Appendix A.

2 Periodic Boundary Condition in Random Traffic Airspace

The concept of primitive cell of a lattice plays a key role in the construction of periodic boundary.
We recall the definition below.

Definition 2.1 Let L be a lattice in R3 with translational symmetries. Let { ~a1, ~a2, ~a3} be a set of
independent lattice vectors of smallest magnitude. A primitive cell C ⊂ R3 is given by

C = {~x = α1 ~a1 + α2 ~a2 + α3 ~a3 | αi ∈ [0, 1), i = 1, 2, 3}.

From the definition of primitive cell the following result follows.

Theorem 2.2 For x ∈ R3, there exists a unique set of integers {k1, k2, k3} such that x ∈ C +
k1 ~a1 + k2 ~a2 + k3 ~a3. In other words, the whole space can be covered by disjoint translated copies of
the primitive cell.

The method of periodic boundary condition is common in molecular dynamics. The following
subsection explains how the PBC arises in airborne self separation traffic simulation modelling.

2.1 Construction of Periodicity

Fix one three dimensional lattice in the airspace. Make N number of copies of that lattice. Assume
each node of each lattice as an aircraft. Also assume that each of the N lattices are following
random translational trajectories independent to each other, keeping relative position of all nodes
unaltered in a single lattice. Now consider a cell or container in the airspace having same shape,
size and orientation of those of the primitive cell (see Definition 2.1) of the lattice. Fill the airspace
with the translated copies of this cell as in Theorem 2.2. It follows that the following consequences
take place.

• Always there are exactly N aircraft (or nodes of lattices) in each cell at a time.

• The relative positions and trajectories of aircraft in one cell is identically same to those in
other cells.

• Each of the N number of aircraft in a single lattice are driven by independent noises.

• If an aircraft leaves the cell through a particular bounding face immediately another enters
the cell through the opposite face (see Figure 1).
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• Aircraft flying within some distance dc of a boundary interact with aircraft in an adjacent
copy of the cell, or, equivalently, with aircraft near the opposite boundary - a wraparound
effect

 

Figure 1: PBC in random air traffic modeling applied on rectangular 2D-cell

Hence to take account of the full airspace it is sufficient to model only one cell containing N aircraft
having trajectories with independent noises and satisfy appropriate boundary conditions.

2.2 Formulation of Periodic Boundary Condition

In the sequel of this report we consider a particular type of PBC where the cells are rectangular in
3-dimensions as in [1]. To this end the generating set {~a1,~a2,~a3} of the lattice is a set of orthogonal
vectors with ~a3 vertical to the Earth surface. After fixing an appropriate reference frame, the
vectors can be chosen as ~a1 = [d, 0, 0],~a2 = [0, d, 0] and ~a3 = [0, 0, h]. Therefore the horizontal
position of an aircraft copy in the neighboring upper or lower cell is the same as original (i.e. no
horizontal shift for copies) and the speeds are the same as original, only height is shifted.

The wrap around effect of the periodic boundaries must be taken into account in both the integration
of the equations of the motion and the interaction computations. After each integration step
the coordinates must be examined, and if an aircraft is found to have flown outside the cell its
coordinates must be adjusted to bring it back inside. Therefore, once the size and the shape of
the cell is suitably chosen, the corresponding PBC needs to be formulated appropriately. In this
report we consider rectangular shapes of PBC only in 2 or 3 dimensions. Here is an example of
boundary condition corresponding to a rectangular box cell having horizontal side lengths d and
vertical height h.

Let (x, y, z) be the coordinate of an aircraft in a rectangular box cell. The boundary condition for
this aircraft can be written as follows

z ←
{

z − h if z ≥ h
z + h if z < 0

y ←
{

y − d if y ≥ d
y + d if y < 0

x ←
{

x− d if x ≥ d
x + d if x < 0.

Remark 2.3 In the above discussion it becomes clear that the choice of size and orientation of
a rectangular box cell depends on the lattice structure or periodicity of the air traffic model under
PBC and vise versa. Therefore a particular geometry of cell corresponds to a particular PBC.
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Thus, in order to specify a particular PBC we would specify the corresponding primitive cell now
onward.

In order to investigate the events such as collision, the choice of orientation of a rectangular cell is
immaterial. Therefore, the cell can be chosen with one face horizontal without the loss of generality.
But the size of the cell has a direct relation to the relative positions of the aircraft, which has a
significant impact on the occurrence of an event like a Mid Air Collision (MAC). In the next
subsection we address few important consequences of periodic structure / cell size parameters.

2.3 Consequences of PBC in [1]

In this section we explain some consequences of applying PBC in [1]. The following notations are
important in the subsequent discussions.

Notation 2.4 Let N be the number of aircraft in each cell and V the size of the cell. Then ρ := N
V

is the traffic density.

From the definition of ρ it is evident that a fixed value of ρ can be maintained with fewer number of
aircraft N by simply decreasing the size V of the cell. And thus the computation can be faster. But
the value of N cannot be too small as well. Because, for a given fixed ρ, V is minimum for N = 1.
In this extreme case the relative position of all the aircraft in the whole air traffic model are fixed,
hence a MAC does not happen. For N = 2, only collisions between two aircraft are considered. In
order to simulate chain reactions we need N >> 1.

Example 2.5 In [1] N = 8 has been chosen to include the possibility of chain reactions in air
traffic. Subsequently the baseline traffic density value is set to be 0.008 aircraft per Nm3 which is
2.5 times the level of one of the busiest en-route sectors in Europe in 1999. To mimic this density,
rectangular box PBC of 40Nm × 40 Nm and 4000ft height.

In [1] there have been a few encounters observed where a feasible resolution by ASAS maneuver
caused a new encounter between one and a copy of the other aircraft. This typically is an event due
to a too small PBC cell size. An example from [1] of this type of undesired event is the following.

Example 2.6 (example identified during MC simulations in [1]). The cell specifications are given
in Example 2.5. In [1] for this example a sequential MC simulation is performed with 10, 000
particles and five different MAC are observed. Among these five MAC one is of the following type:
at quite a late moment a conflict of aircraft #1 with aircraft #2 is solved through a fast climb by
aircraft #1 and this created a MAC with a copy of #2 in a neighboring upper cell.

In order to get grip on these undesired conflicts using PBC, we define the following criterion on
PBC .

Definition 2.7 Let C be the cell corresponding to a given PBC. Let τ be a stopping time w.r.t
the prediction model of the aircraft trajectory under the given PBC, based on the information at
t = 0. We assume that under this PBC there is a class E of encounters (detected at time t = 0)
that has a predicted resolution by a set of maneuver with constraint set M without creating a new
encounter between one and a copy of the other aircraft during [0, τ ]. Then we call the class E to
satisfy No New Encounter criteria with respect to (C,M, τ). In short, we say E satisfies NNE
w.r.t (C,M, τ). Equivalently we also say that the PBC cell C is sufficiently large w.r.t (E ,M, τ).
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In the next section we deal with some examples where we show the existence of a nonempty E
satisfying NNE w.r.t a particular choice of (C,M, τ). From the definition it is clear that a PBC
cell C being sufficiently large for a particular (E ,M, τ) is not ensured to be sufficiently large for
(E ′,M, τ) where E ′ is a class of encounters larger than E . Therefore, while trading off as in Example
2.5 we also search for a PBC which allows a reasonably large class of encounters to satisfy the NNE
criteria.

2.4 Gradation of PBC by ASAS Conflict Detection and Resolution

In order to predict the trajectory we assume a linear trajectory prediction. Based on predicted
relative positions the ASAS conflicts are detected. Let the linear prediction be done at t = 0 and
let s̃ij

t represent the predicted 2D horizontal position of aircraft i relative to aircraft j. Let R and
Hsep be the horizontal and vertical separation minima respectively.

Three horizontal stopping times are relevant for conflict detection (and are also used for resolution):

• the first time for which there is a horizontal predicted conflict (conflict in):
τ ij
in = inf{t; ‖s̃ij

t ‖ ≤ R}
• the time of horizontal predicted miss distance :

τ ij
min = inf{t0 : t0 is a local minima of the predicted map t 7→ ‖s̃ij

t ‖}
• the first time for which horizontal predicted conflict is ended (conflict out):

τ ij
out = inf{t > τ ij

min; ‖s̃ij
t ‖ > R}.

Based on these stopping times we may define three different categories of PBC related to the
sufficiency of its size w.r.t a given E and M. The gradations are as follows.

Grade 1 PBC : If a given PBC cell C is sufficiently large w.r.t (E ,M, τ ij
in) for any pair of aircraft

i and j having an initial encounter in the class E then we say that C corresponds to a grade 1 PBC
w.r.t (E ,M).

Grade 2 PBC : If a given PBC cell C is sufficiently large w.r.t (E ,M, τ ij
min) for any pair of aircraft

i and j having an initial encounter in the class E then we say that C corresponds to a grade 2 PBC
w.r.t (E ,M).

Grade 3 PBC : If a given PBC cell C is sufficiently large w.r.t (E ,M, τ ij
out) for any pair of aircraft

i and j having an initial encounter in the class E then we say that C corresponds to a grade 3 PBC
w.r.t (E ,M).

3 Issues Related to the Height of the Rectangular Box

In the previous sections we have introduced the notion of sufficiently large PBC and we also obtain
a gradation of PBC corresponding to its level of sufficiency. These gradations are defined for any
arbitrary scenario. But the definitions do not suggest a particular methodology for grading a PBC
on considering a particular scenario. We address this problem in this section, and we derive criteria
regarding the height of the rectangular box in order to obtain a sufficiently large PBC cell. We
derive sufficient vertical heights of the rectangular box for two vertical resolution scenarios. The
first scenario assumes two aircraft to change height whereas the second scenario assumes only one
of the aircraft to change height.
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3.1 Assumptions of Scenario 1

We consider encounters between a pair of aircraft at the same flight level where both aircraft change
heights. Here we state the assumptions.

Assumption on initial state

A.0 Let two aircraft, #1 and #2 fly at the same flight level and on a head-on course with equal
speeds in opposite directions.

Let L be the distance between them at time t = 0 when ASAS maneuver is started. i.e., ‖s̃12
0 ‖ = L.

Let V‖ be the absolute value of their horizontal velocities.

Assumptions on maneuver

A.1 #1 and #2 start vertical resolution simultaneously at t = 0.

A.2 #1 climbs with constant vertical speed V⊥ and #2 descends with constant vertical speed
−V⊥.

A.3 No level off, i.e aircraft keep climbing/descending.

A.4 Upper bound on V⊥ i.e., V⊥ ≤ V max
⊥ with V max

⊥ > 0.

Additional assumptions on initial state

A.5 Upper and lower bounds on horizontal speed, i.e., V min
‖ ≤ V‖ ≤ V max

‖ , with V max
‖ ≥ V min

‖ > 0.

A.6 L− 2Hsep

V max
⊥

V‖ ≥ R.

Let E1 denotes the class of all encounters in which the initial state (relative positions and velocities
when the conflict resolution maneuver is taken) satisfies A0, A.5 and A.6. Or in other words

E1 = {(s̃12
0 , ṽ1

0, ṽ
2
0) ∈ R3 × R3 × R3 | s̃12

0 = L~e, ṽ1
0 = −ṽ2

0 = V‖~e,~e ⊥ ~a3, ‖~e‖ = 1, V min
‖ ≤ V‖ ≤

V max
‖ and L− 2Hsep

V max
⊥

V‖ ≥ R} where ṽi
t denotes the predicted velocity of ith aircraft at instant t.

Lemma 3.1 If maneuver A.1-A.4 is taken, we have

min
E1

(L−R) =
2Hsep

V max
⊥

V min
‖ .

Proof : Since A.5 and A.6 are satisfied under E1, we have

L−R ≥ 2Hsep

V max
⊥

V‖ ≥
2Hsep

V max
⊥

V min
‖ .

Again the triplet ((R + 2Hsep

V max
⊥

V min
‖ )~e, V min

‖ ~e,−V min
‖ ~e) is in E1. Hence the result follows.

In the subsequent discussion, the class E1 is termed as the class of usual encounters.
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3.2 Predicted ASAS Vertical Instantaneous Resolution under scenario 1

Under the assumptions A.1, A.2 and A.3 on manoeuver constraint both aircraft #1 and #2, having
an usual encounter, are doing resolution at the same time t=0, and keep climbing/descending. For
scenario 1 and ASAS application considered, the constant vertical speed V⊥ should be such that
the vertical separation at τ1,2

in is a prescribed value Hsep in case the other aircraft is not doing a
resolution.
This suggests V⊥ to be equal to Hsep/τ1,2

in . But the maneuver constraint A.4 puts an upper bound
of V⊥. Thus we get

V⊥ = min
{

V max
⊥ ,

2Hsep

L−R
V‖

}

since, τ1,2
in = L−R

2V‖
. Again since we consider the encounters with initial condition A.6, we finally

obtain
V⊥ =

2Hsep

L−R
V‖.

Since the predicted accelerations are assumed to be zero during the resolution, we obtain linear
predicted trajectories of the aircraft. Thus we can draw a figure with rectilinear predicted paths.
The Figure 2 demonstrates the predicted resolution. From the Figure 2 it follows that
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Figure 2: Side view of ASAS vertical resolution (predictions)

h1

2
÷ R

2
= Hsep ÷ L−R

2
⇒ h1 =

2HsepR

L−R

and
h2

2
÷R = Hsep ÷ L−R

2
⇒ h2 =

4HsepR

L−R
.

3.3 Evaluation of Minimal Box Height for Each Grade under scenario 1

Grade 1: Since the (predicted) horizontal positions and speeds are the same for the copies (see
Figure 2), the horizontal stopping times for the copies are the same as for the original aircraft.
Hence it suffices to consider the aircraft pair #1 and copy of #2 at time t = τ1,2

in and we must have
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(predicted) vertical separation at that time. This is a necessary and suficient condition for grade 1
PBC . From the Figure 2 we get

h− 2Hsep ≥ Hsep.

Hence,
h ≥ 3Hsep.

Grade 2: As earlier it suffices to consider the copy of #2 at time t = τ1,2
min and we must have

(predicted) vertical separation at that time for all usual encounters to obtain a grade 2 PBC , i.e.,

min
E1

(h− 2Hsep − 2
h1

2
) ≥ Hsep.

Therefore,

h ≥ 3Hsep + max
E1

2HsepR

L−R

= 3Hsep +
2HsepR

min
E1

(L−R)

= 3Hsep +
V max
⊥

V min
‖

R. [ From Lemma 3.1]

Hence a necessary and sufficient high value of h to obtain a PBC of grade 2 must satisfy

h ≥ 3Hsep +
V max
⊥

V min
‖

R.

Grade 3: As earlier we consider the pair #1 and the copy of #2 at time t = τ1,2
out. From the Figure

2 we get the following necessary and sufficient condition for grade 3 PBC

min
E1

(h− 2Hsep − 2
h2

2
) ≥ Hsep.

Hence,

h ≥ 3Hsep + max
E1

4HsepR

L−R

= 3Hsep +
4HsepR

min
E1

(L−R)

= 3Hsep +
V max
⊥

V min
‖

2R. [ from Lemma 3.1] (3.1)

Remark 3.2 It is clear from the above discussion that the conditions on rectangular box height
obtained for all three different grades are necessary as well as sufficient. In view of the tradeoffs
discussed in Subsection 2.3, we are interested in the minimum height fulfilling the conditions for
respective grades. We also note that: minimum height for grade1 PBC ≤ minimum height for grade
2 PBC ≤ minimum height for grade 3 PBC. Let the minimum height for grade 3 PBC be denoted
by hmin. Thus if for a rectangular box the height h needs to be larger than hmin, the corresponding
PBC is sufficiently large under A.0-A.6 and for all three horizontal stopping times.
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3.4 Scenario 2 and Minimal Box Height

In this subsection we consider scenario 2 in which only one of the aircraft is assumed to change
height, and we show how this influences the minimum box height characterization in subsection
3.1-3.3. This scenario 2 satisfies A.0 and A.3-A.6 but maneuver assumptions A.1 and A.2 are
replaced by by the following assumptions:

A1′ #1 start vertical resolution at t = 0 but #2 does not take any resolution.

A2′ #1 climbs with constant vertical speed V⊥ and #2 keeps flying horizontally with same hori-
zontal speed.

Because we assume that scenario 2 obeys assumptions A.3-A.6, we have V⊥ = 2Hsep

L−R V‖ and obtain
linear predicted trajectories of the aircraft as before. Figure 3 demonstrates the predicted resolution.
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Figure 3: Side view of ASAS vertical resolution (predictions)

It is important to note that for this scenario the value of h1 and h2 are unchanged and the Lemma
3.1 still holds. The calculation of the box height for this scenario is given below.

Grade 1: As before we must have (predicted) vertical separation at t = τ1,2
in between the aircraft

pair #1 and copy of #2. From the Figure 3 we get

h−Hsep ≥ Hsep.

Hence the necessary and sufficient height for grade 1 PBC is

h ≥ 2Hsep.

Grade 2: As earlier it suffices to consider the copy of #2 at time t = τ1,2
min and we must have

(predicted) vertical separation at that time for all usual encounters, i.e.,

min
E1

(h−Hsep − h1

2
) ≥ Hsep

h ≥ 2Hsep + max
E1

HsepR

L−R

= 2Hsep +
HsepR

min
E1

(L−R)

= 2Hsep +
V max
⊥

2V min
‖

R. [ from Lemma 3.1]
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Hence a necessary and sufficient high value of h to obtain a PBC of grade 2 satisfies

h ≥ 2Hsep +
V max
⊥

2V min
‖

R.

Grade 3: As earlier we consider the pair #1 and the copy of #2 at time t = τ1,2
out. From the Figure

2 we get

min
E1

(h−Hsep − h2

2
) ≥ Hsep.

Hence a PBC of grade 3 is achieved if and only if

h ≥ 2Hsep + max
E1

2HsepR

L−R

= 2Hsep +
2HsepR

min
E1

(L−R)

= 2Hsep +
V max
⊥

V min
‖

R. [ from Lemma 3.1] (3.2)

3.5 Scenarios 1 and 2 with Heterogeneous Aircraft

The bounds on vertical and horizontal velocities (defined in A.4 and A.5) appear in the expression of
minimum necessary rectangular box height derived in earlier subsections. Clearly, these parameters
not only depend on the air traffic model under consideration but on the individual aircraft types
as well. In particular the value of V max

⊥
V min
‖

ranges roughly from 0.05 to 0.08 depending on the aircraft

type (see Appendix A). While specifying the usual encounters in subsection 3.1, so far we have
ignored the heterogeneity of the aircraft and have assumed all the aircraft are of same type.

If we allow the encountering aircraft to be of heterogeneous type we should replace A.4, A.5 and
A.6 by the following set of assumptions:

A.4′ Aircraft of ith type has an upper bound V max
⊥ (i)(> 0) on its vertical speed. Also assume

V⊥ ≤ min
i

V max
⊥ (i).

A.5′ Aircraft of ith type has a lower bound V min
‖ (i)(> 0) on its horizontal speed. Also assume

V‖ ≥ max
i

V min
‖ (i).

A.6′ L− 2Hsep

min
i

V max
⊥ (i)V‖ ≥ R.

Let E ′ denotes the class of all encounters in which the initial state (relative positions and velocities
when the conflict resolution maneuver is taken) satisfies A0, A.5′ and A.6′. If maneuver according
to A.1-A.3 and A.4′ is taken to resolve an encounter in E ′, then we have

min
E ′

(L−R) =
2Hsep

min
i

V max
⊥ (i)

max
i

V min
‖ (i). (3.3)

We use (3.3) and the characterisations in earlier section to obtain the PBC criteria given in Table
1.
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PBC grades grade 1 grade 2 grade 3

Scenario 1 3Hsep 3Hsep +
min

i
V max
⊥ (i)

max
i

V min
‖ (i)

R 3Hsep +
min

i
V max
⊥ (i)

max
i

V min
‖ (i)

2R

Scenario 2 2Hsep 2Hsep +
min

i
V max
⊥ (i)

2max
i

V min
‖ (i)

R 2Hsep +
min

i
V max
⊥ (i)

max
i

V min
‖ (i)

R

Table 1: Minimum box height hmin for scenarios 1 and 2 with heterogeneous aircraft

4 Issues Related to the Width of a Rectangular Box

In the previous section, by considering a class of encounters we have derived sufficient conditions
for the minimum box height to achieve NNE before some pre-specified stopping times. We are
going to adopt a similar approach in order to derive a sufficient large width for the rectangular 3D
box PBC of Section 3 i.e., ~a1 = [d, 0, 0],~a2 = [0, d, 0] and ~a3 = [0, 0, h].

In order to derive a sufficient width for the rectangular box, we consider a horizontal resolution
scenario between two aircraft, both of which maneuver. The scenario is presented in the form of
following assumptions.

4.1 Assumptions of Scenario 3

We consider a large class of encounters concerning a pair of aircraft at the same flight level. First
we state the assumptions adopted. Let L be the distance between them at time t = 0 when ASAS
maneuver is started. i.e., ‖s̃12

0 ‖ = L. Let V‖ be the absolute value of their horizontal velocities.

Assumptions on initial state

B.0 Let there be two aircraft, #1 and #2 respectively flying at the same flight level and are on a
head-on collision course with equal speed from opposite directions. At time zero there is no
other aircraft within the horizontal separation minima of either of #1 and #2.

B.1 Aircraft of ith type has a lower bound V min
‖ (i)(> 0) on its horizontal speed. Also assume

V‖ ≥ max
i

V min
‖ (i) = Vm (say).

Assumptions on maneuver

B.2 #1 and #2 start horizontal resolution simultaneously at t = 0.

B.3 Both of #1 and #2 turn left for a specific time interval with constant angular acceleration
α` = g tanβ keeping the absolute value of the horizontal speed unchanged, where β is the
constant banking angle of the aircraft (see Section 5.2).

B.4 No change of height.

4.2 Scenario 3 Predicted ASAS Horizontal Instantaneous Resolution

Under manoeuver constraint assumptions B.2, B.3 and B.4, both aircraft #1 and #2, when having
an encounter B.0 and B.1, start resolution at the same time t = 0, and continue with constant

11



angular acceleration and constant speed till a pre-specified time t∗. After t∗ each stops turning and
follow a linear trajectory with constant horizontal speed. Since, both of the angular acceleration and
the speed are constant, the radius of curvature is also constant. Therefore, each aircraft takes left

turn by following a circular path of radius r :=
V 2
‖

α`
and finally completes a turn of angle ψ := t∗V‖

r
at t∗. Figure 4 demonstrates the predicted resolution. For this scenario we choose the minimum t∗
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Figure 4: Top view of ASAS horizontal resolution (predictions)

or equivalently the minimum angle of turn ψ such that the horizontal separation between both of
the aircraft is never less than the horizontal separation minima R, in case the other aircraft is not
doing a resolution.

Let, the trajectories Sψ
1 and SL

2 be such that Sψ
1 (0) = (0, 0), Ṡψ

1 (t) = V‖
(
cos

(
V‖
r t

∧
ψ

)
, sin

(
V‖
r t

∧
ψ

))

and SL
2 (t) = (L− V‖t, 0) where a

∧
b denotes the minimum of two real numbers a and b. Given a

separation minima R and initial distance L, #1 chooses a trajectory Sψ0
1 (t) such that

R = min
t
‖Sψ0

1 (t)− SL
2 (t)‖ > min

t
‖Sψ

1 (t)− SL
2 (t)‖ (4.4)

for any ψ < ψ0, provided ψ0 exists in (0, π) for given R and L. We define Dr := {(R, L) ∈
(0,∞)×(0,∞)|∃ψ0 ∈ (0, π) such that mint ‖Sψ0

1 (t)−SL
2 (t)‖ = R holds with radius of curvature r}.

Hence, for (R, L) ∈ Dr there exists a unique ψ0 satisfying (4.4) and hence the angle ψ0 can be
denoted as ψ(R, L).

Theorem 4.1 Assume, (R, L) ∈ Dr.
(i)Let t′ be the time instant of predicted miss distance between #1 and #2 i.e., t′ := argmin ‖Sψ(R,L)

1 (t)−
SL

2 (t)‖, then t′ ≥ ψ(R, L) r
V‖

= t∗ .

(ii) t′ = ψ(R, L) r
V‖

+ 1
2V‖

(
L− rψ(R, L)− 2r tan ψ(R,L)

2

)
.

(iii)L− rψ(R, L) ≥ 2r tan ψ(R,L)
2 .

(iv) Let gr(L,ψ) := (L− rψ) sin ψ
2 then ψ(R, L) is the unique solution of gr(L, ·) = R.

(v) If r ≥ R/
√

2, then ψ(R, L) ≤ π/2.
(vi) Assume the constants r,R and L satisfy the following relation L = rψ(R,L) + 2r tan ψ(R,L)

2 .
Then L = min{L′ : (R, L′) ∈ Dr}.
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Proof : (i) Let if possible t′ := argmin ‖Sψ(R,L)
1 (t)−SL

2 (t)‖ < ψ(R,L) r
V‖

. Then we define ψ′ := V‖
r t′

which is less than ψ(R,L). We can also define an alternative trajectory of #1 given by Sψ′
1 (t). Since,

t′ < ψ(R, L) r
V‖

we have Sψ′
1 (t′) = S

ψ(R,L)
1 (t′) as well as Ṡψ′

1 (t′) = Ṡ
ψ(R,L)
1 (t′) and hence

d

dt
‖Sψ′

1 (t)− SL
2 (t)‖2

∣∣∣
t=t′

=
d

dt
‖Sψ(R,L)

1 (t)− SL
2 (t)‖2

∣∣∣
t=t′

.

Again from the definition of t′ it is a local minima of ‖Sψ(R,L)
1 (t)− SL

2 (t)‖2 which implies that the
right side of above equation is zero. This implies that t′ is a local minima of ‖Sψ′

1 (t) − SL
2 (t)‖2

also. Thus, mint ‖Sψ′
1 (t)−SL

2 (t)‖ = ‖Sψ′
1 (t′)−SL

2 (t′)‖ = ‖Sψ(R,L)
1 (t′)−SL

2 (t′)‖ = mint ‖Sψ(R,L)
1 (t)−

SL
2 (t)‖ = R. Hence contradicting (4.4) with ψ′ < ψ(R, L).

(ii) Let S12(t) := S
ψ(R,L)
1 (t)−SL

2 (t) and V12(t) := ˙S12(t). Therefore S12(ψ(R, L) r
V‖

) = (r sinψ(R,L)−
L+rψ(R, L), r(1−cosψ(R, L))) and V12(t) = V‖(1+cosψ(R, L), sinψ(R, L)) for all t ≥ ψ(R, L) r

V‖
.

Note that #1 takes rectilinear trajectory during [ψ(R, L) r
V‖

, t′] and t′ = arg min ‖Sψ(R,L)
1 − SL

2 ‖.
Therefore, the total distance traveled by both a/c during [ψ(R,L) r

V‖
, t′] = the total distance traveled

by both a/c till miss distance achieved. Hence,

(t′ − ψ(R, L)
r

V‖
)‖V12‖ =

−S12(ψ(R,L) r
V‖

) · V12

‖V12‖ .

By substituting the value of S12(ψ(R, L) r
V‖

) and V12 in the above equation we obtain

t′ = ψ(R,L)
r

V‖
+

1
2V‖

(
L− rψ(R,L)− 2r tan

ψ(R, L)
2

)
.

(iii) Follows from (i) and (ii).

(iv) Following the notation defined in the proof of (ii) we calculate

min
t
‖Sψ(R,L)

1 − SL
2 ‖ = ‖S12(t′)‖ = ‖S12(ψ(R,L)

r

V‖
) + (t′ − ψ(R,L)

r

V‖
)V12‖

where t′ is the time of miss distance. From the proof of (ii) we substitute the value of t′, V12 and
S12(ψ(R, L) r

V‖
) in the above equation and we get

min
t
‖Sψ(R,L)

1 − SL
2 ‖ = (L− rψ(R, L)) sin

ψ(R,L)
2

.

Again gr(L, ψ) := (L− rψ) sin ψ
2 . Therefore from above equation and (4.4) we have

ψ(R,L) = gr(L, ·)−1(R) (4.5)

provided the inverse exists. From implicit function theorem we have the following. Let, (L0, ψ0) be
such that gr(L0, ψ0) = R and ∂

∂ψgr(L0, ψ0) 6= 0 then there is a open neighborhood UL0 of L0 such
that a function ψ(R, ·) can be defined on UL0 as in (4.5). We have,

∂

∂ψ
gr(L,ψ) =

1
2
(L− rψ) cos

ψ

2
− r sin

ψ

2
.

From (iii) it follows that ∂
∂ψgr(L,ψ(R,L)) ≥ 0. Clearly, ∂

∂ψgr(L′, ψ(R, L′)) = 0 if and only if

L′ − rψ(R, L′) = 2r tan ψ(R,L′)
2 . Hence, ψ(R, L′) is a solution of R = gr(L′, ψ) = 2r sin ψ

2 tan ψ
2 .
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The right side is monotonic in ψ on [0, π]. Therefore, ψ(R,L′) is the unique solution of the above
equation R = 2r sin ψ

2 tan ψ
2 . Thus, ψ(R, L) is the unique solution of R = gr(L, ·) for all (R, L) ∈ Dr.

(v) From (iii) and (iv) we have 2r tan ψ(R,L)
2 sin ψ(R,L)

2 ≤ R. If r ≥ R/
√

2, we have tan ψ(R,L)
2 sin ψ(R,L)

2 ≤
1/
√

2 = tan π
4 sin π

4 . Since the function on left is monotone increasing in ψ on the interval [0, π/2],
we have ψ(R,L) ≤ π/2.

(vi) From (iv) we get ∂ψ(R,L)
∂L (L

2 cos ψ(R,L)
2 − r(sin ψ(R,L)

2 + ψ(R,L)
2 cos ψ(R,L)

2 )) = − sin ψ(R,L)
2 . Using

the inequality in (iii) we have,
∂ψ(R, L)

∂L
< 0. (4.6)

Or in other words ψ(R, L) is a strictly decreasing function on L. If possible we assume that there
are L′ < L′′ such that (R, L′) ∈ Dr, (R, L′′) ∈ Dr and L′′ = rψ(R, L′′) + 2r tan ψ(R,L′′)

2 . Then
from (4.6) we get L′ < rψ(R, L′) + 2r tan ψ(R,L′)

2 which contradicts (iii). Therefore, L′′ = min{L′ :
(R, L′) ∈ Dr}.

Theorem 4.2 Consider the following system with R > 0 and r(> R/
√

2)

(L− rψ) sin
ψ

2
= R (4.7)

rψ + 2r tan
ψ

2
= L. (4.8)

(i) The system (4.7)-(4.8) has a unique solution (L∗, ψ∗) (say).
(ii) (R, L∗) ∈ Dr.
(iii) ψ∗ = ψ(R, L∗).
(iv) L∗ = min{L : (R, L) ∈ Dr}.

Proof : (i) For r > R/
√

2 > 0, the equation 2r sin ψ
2 tan ψ

2 − R = 0 has a unique solution in
(0, π/2). Let ψ∗ be the solution and we also define L∗ := rψ∗ + 2r tan ψ∗

2 . Clearly, (L∗, ψ∗) is the
unique solution of the system (4.7)-(4.8).

(ii) We can show that mint ‖Sψ∗
1 − SL∗

2 ‖ = ‖Sψ∗
1 (ψ∗ r

V‖
) − SL∗

2 (ψ∗ r
V‖

)‖ = (L∗ − rψ∗) sin ψ∗
2 = R.

Hence, (R,L∗) ∈ Dr.

(iii) From (ii) of Theorem 4.2 and (iv) of Theorem 4.1 we have ψ(R, L∗) is the unique solution of
gr(L∗, ψ) = R. Again in (i) of Theorem 4.2 we showed gr(L∗, ψ∗) = R. Thus ψ∗ = ψ(R, L∗).

(iv) Follows from (i), (ii), (iii) of Theorem 4.2 and (vi) of Theorem 4.1.

In view of the above two theorems we consider the following additional assumptions on the initial
state:

B.5 (i) r =
V 2
‖

α`
> R√

2
and (ii) L ≥ L∗ where L∗ is as in Theorem 4.2.

We define a stopping time τ ′ as the time instant of predicted miss distance between #1 and the copy
of #2 in the neighboring box on its right. We look for a rectangular box which is sufficiently large
with respect to the set of encounters and maneuver constraint given in B.0-B.5 and the stopping
time τ ′.
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4.3 Evaluation of Width of sufficiently large 3D box under scenario 3

Let in Figure 4, r =
V 2
‖

α`
be the radius of curvature of the circular path of #1 and ψ = ψ(R,L).

Therefore in the figure aircraft #i completes circular path at the point Pi. Subsequently, it continues
with zero acceleration by following a linear trajectory which is tangent to the curvilinear path at
point Pi. This tangent also makes angle ψ with the pre-maneuver predicted trajectory. Let Oi be
the orthogonal projection of Pi on the line of pre-maneuver predicted trajectory. If the coordinate
of P1 is (X, Y ), then A1O1 = A2O2 = X. Hence O1O2 = L − 2X. Therefore, the predicted miss
distance δ, between the predicted trajectories of #1 and the copy of #2 in the neighboring box on
right side of #2 is given by

δ = (d− 2Y −O1O2 tanψ) cos ψ

= (d− 2Y − (L− 2X) tan ψ) cos ψ

where d is the side lengths of the box. To obey NNE during [0, τ ′] we must have δ ≥ R for all
encounters satisfying B.0 - B.5. Thus we get

(d− 2Y − (L− 2X) tanψ(R, L)) cos ψ(R, L) ≥ R (4.9)

for all L ≥ L∗ and V‖ ≥ Vm with ψ(R, L) unique solution of gr(L, ·) = R. From the figure we

calculate X = r sinψ(R, L) and Y = r − r cosψ(R, L). We also have r =
V 2
‖

α`
. Hence from (4.9) we

have

d ≥ max
V‖≥Vm

max
L≥L∗

(
R

cosψ(R, L)
+ 2

V 2
‖

α`
(1− cosψ(R,L)) + (L− 2

V 2
‖

α`
sinψ(R,L)) tanψ(R, L)

)

= d∗(say) (4.10)

It is important to note that, the assumption in B.0* is not checked yet. To derive the above
condition we have considered the copy of A2 on its right side only. The position of the copy of A2
on its left side is not relevant because in B.3 the left turns are assumed. But still the position of
copy of A2 just behind A1 has an important role in validating our analysis. Though this copy would
fly away of A1 but its initial separation should be larger than the horizontal separation minima
according to B.0*. Therefore, we obtain another condition on the initial separation L of A1 and
A2 namely,

L ≤ d−R. (4.11)

Thus B.0-B.5 along with (4.11) represents a nonempty class of encounters if and only if L∗ ≤ d−R
or equivalently, d ≥ L∗ + R. Let

dmin := max(d∗, L∗ + R),

then d ≥ dmin gives a necessary and sufficient condition of width for the 3D box. If the box width d
is greater or equal to dmin as derived above, the box is sufficiently large for simulating the encounters
with maneuver constraints listed in B.0-B.5.

5 Numerical Evaluation

5.1 3D Box Height

Homogeneous aircraft
We consider the speed constraints of several aircraft types and altitudes from BADA 3.6 Perfor-
mance Files (ref : Aircraft performance summary tables for the base of aircraft data (BADA),
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revision 3.6, Eurocontrol). The details are given in Appendix A. The data presented in Appendix
A shows that the value of climb parameter V max

⊥
V min
‖

ranges roughly from 0.05 to 0.08 depending on

the aircraft type. Since the expressions of suggested minimum box height of grade 3, i.e., hmin

(calculated in earlier sections) involves the climb parameter, we illustrates the dependence of hmin

(for the homogeneous case) on the value of climb parameter by the following plots in Figure 5. The
 

 

Figure 5: hmin required for a grade 3 PBC as a function of V max
⊥

V min
‖

for scenarios 1 and 2

parameter values are plotted along horizontal axis and the corresponding evaluation of hmin (using
(3.1) and (3.2)) is plotted along vertical axis. In particular we take R = 5Nm = 30380.57743ft and
Hsep = 1000ft. The graph comprises the result of two different scenarios discussed in Subsections
3.3 and 3.4.

Heterogeneous aircraft
Next we evaluate the minimum sufficient height of the 3D box in heterogeneous random traffic
airspace model for both the scenarios. We obtain the numerical values from tables in Appendix B.
In the tables the velocity constraints of five different types of aircraft are given for their positions
in three different flight levels. We assume that these are the variety of aircraft in the heterogeneous
random traffic airspace model that we consider. In reality, the horizontal encounters may happen
with aircraft only in the same flight level. Therefore, it seems that the constraint for a different flight
level has no influence in resolving the current encounter. But under periodic boundary conditions all
the copies of an aircraft in vertical direction have same velocities. Therefore under PBC the effective
velocity constraints are obtained by taking common constraint for all the flight levels. These
constraints of the five different aircraft are given in Table 2. From Table 2 it follows that, for our

No. Ac Type Class V max
⊥ (fpm) V min

‖ (kts) V max
⊥

V min
‖

1 A320-212 M 2700 458 0.058218504
2 A340-313 H 2160 469 0.04548243
3 B733 (B737-300) M 2780 434 0.063258344
4 B744 (B747-400) H 3060 493 0.061296723
5 B764 (B767-400) H 2590 458 0.055846639

Table 2: Velocity constraints of five different aircraft under PBC
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case mini V
max
⊥ (i) = 2160 fpm and max

i
V min
‖ (i) = 493 kts. Therefore,

min
i

V max
⊥ (i)

max
i

V min
‖ (i)

= 0.043268275.

Using this, the numerical evaluation of Table 1 is given in Table 3.

PBC grades grade 1 grade 2 grade 3
Scenario 1 3000 ft 4315 ft 5629 ft
Scenario 2 2000 ft 2657 ft 3315 ft

Table 3: Evaluation of Minimum rectangular box height hmin (in ft) for scenarios 1 and 2 with
heterogeneous aircraft

By considering heterogeneous aircraft we find the minimum 3D box height. For scenarios 1 and 2
this yields two values for hmin: 5629 ft and 3315 ft respectively. The height value used in [1] was
4000 ft, which is sufficiently large for scenario 2, but not for scenario 1. Adherence to the value of
5629 ft should have avoided the problem reported in example 2.6 where two aircraft behaved like
scenario 1.

5.2 3D Box Width

The angular acceleration(α`) of the aircraft depends on its banking angle β so that with reference
to the aircraft the parallel component of centrifugal force is balanced with parallel component of
the gravitational force. In particular, the relation is

α` = g tanβ

where g is the gravitational acceleration (assumed to be the same for all height). For civil aircraft
β ∈ [0, π/6]. For β = π/6 we calculate

α` ≥ g tan
π

6
= 5.663806141m/s2. (5.12)

We consider the heterogeneous scenario with aircraft types as in Appendix A. From Table 5.2
Vm = 493kts = 253.5992m/s. We also take R = 5Nm = 9260m. Thus we have r = V 2

m
α`

≥
11355.07791m > R/

√
2. Therefore, the assumption in Theorem 4.2 is valid. The computation of

dmin involves a maximization problem (4.10) which has to be done numerically. To this end we
determine the domain of maximization. By solving the system (4.7)-(4.8) we obtain

ψ∗ = 2 cos−1

(
4r

R +
√

R2 + 16r2

)
. (5.13)

Given a value of V‖ ≥ Vm we find r =
V 2
‖

α`
using (5.12) and we substitute this value in (5.13) to

get the value of ψ∗. Next L∗, the lower bound of variable L is obtained from (4.8) by substituting
ψ = ψ∗. Then the inner maximum of (4.10) is computed for the given value of V‖. Finally the value
of d∗ is obtained by numerical computation of outer maximum over all V‖ ≥ Vm. The following
table shows the computation of dmin for different bank angles.

Bank angle Radius of curvature Corresponding Corresponding dmin

β r ≥ ψ∗ L∗ d∗ = max(d∗, L∗ + R)
30o 11.37 km 70.45o 16.2 Nm 36.2 Nm 36.2 Nm
25o 14.07 km 63.81o 17.9 Nm 28.5 Nm 28.5 Nm

Table 4: Heterogeneous model: Computation of dmin for different bank angles and Vm = 493kts
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Since it is of interest to know what happens to the box width at other Vm values, we also calculate
dmin with a smaller and higher value of Vm (see Tables 5 and 6).

Bank angle Radius of curvature Corresponding Corresponding dmin

β r ≥ ψ∗ L∗ d∗ = max(d∗, L∗ + R)
30o 9.81 km 75.35o 15.15 Nm 46.4 Nm 46.4 Nm
25o 12.15 km 68.33o 16.73 Nm 33.2 Nm 33.2 Nm

Table 5: Heterogeneous model: Higher dmin for a smaller Vm = 458kts

Bank angle Radius of curvature Corresponding Corresponding dmin

β r ≥ ψ∗ L∗ d∗ = max(d∗, L∗ + R)
30o 15.9 km 60.2o 18.99 Nm 25.9 Nm 25.9 Nm
25o 19.7 km 54.4o 21.04 Nm 22.7 Nm 26.0 Nm

Table 6: Heterogeneous model: Lower dmin for a higher Vm = 583kts

In [1], Vm = 493kts and 25o maximum bankangle has been used and a PBC width of 40Nm. Table
4 shows that this width was sufficiently large and might even be reduced to 30Nm.

6 Conclusion

In [1], a very large 3D airspace with a very large number of airborne self separating aircraft have
been simulated by making use of a Periodic Boundary Condition (PBC) [4]. The specific PBC
used is a rectangular 3D box, which are packing a virtually infinite 3D airspace. In each 3D box,
N airborne self separating aircraft are flying. This way, one only needs to simulate N aircraft
in one box, in order to mimic a simulation of infinitely many aircraft in an infinite 3D airspace.
The maximum number of aircraft that has been simulated without running into computer memory
problems was N = 8. Subsequently, the size of the 3D box has been varied in order to vary the
aircraft density in the 3D airspace.

Although the use of PBC is a well known approach in physics particle simulation, little is known
about choosing a sufficiently large PBC. Therefore in [1] the size of the 3D box has been chosen
rather arbitrarily, and it subsequently has been observed that sometimes a rare event happened
in the simulation which was due to the limited size of the 3D box. Because events caused by the
limited size of the 3D box can properly be identified, the potential errors caused by a too small
sized 3D box can be kept under control. In order to better understand under which conditions the
size of the 3D box is large enough, this report has derived bounds on the size of the 3D boxes under
the airborne self separation concept considered in [1].

Some sufficient conditions for the minimum box height hmin have been derived in Section 3 for use
in PBC towards collision risk simulation for the airborne self separation concept considered in [1].
The derivations also indicate the possible consequences of a simulation model with PBC having 3D
box height below hmin. Similarly, in section 4 we derived the minimum sufficient 3D box width
dmin. In section 5 values for hmin and dmin have been evaluated and these appear to be higher and
lower than those used in [1] (see Example 2.5.). Therefore the present study opens up the scope of
increasing the height and decreasing the width of the 3D box.

For the concept considered in [1] the derivations developed in this report have shown that a PBC
defined by a 3D rectangular box of height 6000 ft and width of 30 Nm would be sufficiently large
to simulate an infinitely large airspace. Because the 3D rectangular box used in [1] was 4000 feet
high and 40 NM width, this explains why collisions have been reported which were caused by a
too small height of the 3D box. The operational concept considered within iFly differs significantly
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from the one considered in [1], there is no certainty yet whether a PBC using similar rectangular
3D box works as well as it has shown to work in [1]. Hence it remains to try this out in WP7.3
foreseen large scale MC simulations of an advanced airborne self separation concept, and we should
be prepared in identifying undesired events that are caused by the use of a 3D rectangular box as
PBC.
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A Appendix: BADA performance data

This appendix provides an overview of performance data used for several aircraft types from BADA
3.6 Performance Files [5].

Unit Stands for In SI units
ft Feet 0.3048 (m)
FL Flight Level 100ft (m)
fpm Feet per minute ft/60 (m/s)
kts Knots 0.5144 (m/s)

Abbreviations:
Class : Heavy (H) or Medium (M)
ROC :Rate Of Climb
ROD :Rate Of Descend
TAS : True Airspeed

From BADA 3.6:
Values for FL 220
Ac Type Class Max(ROC, ROD) Min(TAS) Factor

(fpm) (kts) Max (ROC,ROD) / Min(Tas)
A320-212 M 2700 425 0.0627
A340-313 H 2160 412 0.0518
B733 (B737-300) M 2780 386 0.0711
B744 (B747-400) H 3120 464 0.0664
B764 (B767-400) H 2780 399 0.0688

Values for FL 310
Ac Type Class Max(ROC, ROD) Min(TAS) Factor

(fpm) (kts) Max (ROC,ROD) / Min(Tas)
A320-212 M 3540 458 0.0763
A340-313 H 2900 469 0.0611
B733 (B737-300) M 3310 434 0.0753
B744 (B747-400) H 3570 493 0.0715
B764 (B767-400) H 2990 458 0.0645

Values for FL 420
Ac Type Class Max(ROC, ROD) Min(TAS) Factor

(fpm) (kts) Max (ROC,ROD) / Min(Tas)
A320-212 M - - -
A340-313 H 2340 459 0.0503
B733 (B737-300) M - - -
B744 (B747-400) H 3060 482 0.0627
B764 (B767-400) H 2590 447 0.0572
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