A 3 ConOps Cost-Benefit Analysis

AUEB-RC/TRANSLOG

TRANsportation Systems and LOGistics Laboratory
Department of Management Science and Technology
Athens University of Economics and Business
Evelpidon 47A \& 33 Lefkados, 113 62, Athens, Greece
Tel: +30 $2108203673-5$, Fax: +30 2108203684
Email: translog@aueb.gr, Web site: http://www.translog.aueb.gr

Table of Contents
-Problem Definition
$\square O b j e c t i v e s$
\square Methodology
-CBA for the Airlines
-CBA for the ANSPs
\square Concluding Remarks

Problem Definition

$\square A^{3}$ ConOps Economic Assessment

- Degree of Concept Maturity
\square Stage in Project Lifecycle
- High Uncertainty in estimating Benefits and Costs
-Consideration of all relevant stakeholders

Objective

- Develop and apply Cost Benefit Analysis (CBA) to assess the economic viability of A^{3} ConOps considering the implications to both Airlines and ANSPs

Cost-Benefit Analysis Methodology

Building Analysis Scenarios for Airlines

- Uncertain Benefit variables:
- Horizontal \& Vertical Flight Efficiency Gain (\%)
- En-route ATFM Delay Reduction (\%)
- ANSPs en-route charges Reduction (\%)
- Uncertain Cost Variables:
- Forward-fit per aircraft
- Analysis Scenarios definition:
\square Select a values of B/C from 1 to 2
\square Determine alternative combinations of cost and benefit variables

CBA Assumptions for Airlines

- Horizontal Flight Efficiency Gain: 0-20\%
- En-route ATFM delay reduction: 0-20\%
- En-route ANSPs Charges: 0-62\%
- Retro-fit/Forward-fit Cost was assumed equal to 2 (as in SESAR CBA)
- Analysis period: 2010-2035
\square Full scale benefits are encountered by the end of the implementation period (in 2026)

CBA Results for Airlines: B/C=1 (IRR 8\%)


```
#ATFlal [elay Ped: %%. Horiz Efficieloy: LO*
```


$$
\begin{aligned}
& \text { - ATFlul Lely Per: E\% Horiz. Efficienc. 20\% }
\end{aligned}
$$

CBA Results for Airlines : B/C=1.2 (IRR: 9.7\%) iFly

ATFlil Lely Ped:

[^0]+ATFFl [elly Fed: 10\%, Horiz. Effigieng. O\%,

Key Findings from CBA for Airlines

- As B/C increases, higher reduction of en-route charges is required for the same level of benefits (ATFM delay reduction \& Flight Inefficiency Reduction)
- In the most pessimistic scenario (forward-fit Cost= €73728, ATFM delay reduction=0\% \& Flight Efficiency Gain $=0 \%$) the maximum B/C achieved is 1.68 (IRR: 13.3\%)
- Viable B/C ratios can be achieved even if the FF Cost is underestimated by a factor 2-2.5 and system performance results to ATFM delay reduction=0\% \& Flight Efficiency Gain=0\%

Building Analysis Scenarios for ANSPs

- Uncertain Cost variables:
- One-off Implementation Cost (Transition \& Training Cost)
- Uncertain Benefit Variables:
- Operating Staff Cost Savings(\%)
- Operating non-staff cost savings(\%)
\square Analysis Scenarios Definition:
\square Select B/C from 1 to 2
\square Determine combinations of values for Staff Cost Savings (\%),Non-Staff Cost Savings (\%), and one-off implementation cost

CBA Assumptions for ANSPs

- Analysis Time horizon: 2010-2035
- The (Transition cost/Training cost) ratio was assumed equal to 6
- En-route Staff Cost Reduction up to 70\%
- Operating non-staff cost up to 5\%

Key Findings from CBA for ANSPs

- The A^{3} ConOps changes will have dramatic implications to the en-route ANSPs operations
- This will result to considerable reduction of operating (staff and non-staff) cost
- Transition and Training cost are expected to be the major cost elements for ANSPs
- Overall Service cost is expected to be significantly reduced

Building Combined Analysis Scenarios

- ANSPs en-route staff cost reduction affects Enroute charges reduction
\square Combined analysis scenarios aim to examine the economic implications to Airlines and ANSPs simultaneously
\square Define Analysis Scenarios:
$>$ Select a B/C value
> Determine alternative combinations of values for the Airlines and ANSPs uncertain Costs and Benefits Variables

Assumptions for Airlines-ANSPs CBA

- \%En-route Staff Cost Reduction: 5\%-70\% (thus Enroute ANSPs Charges Reduction 3.1\%-43.4\%)
- \%Operating (non-staff) Cost Reduction:0\%-5\%
- Analysis Time Horizon: 2010-2035
- ATFM En-route Delay: 0\%-10\%

For Worst Case FF-cost=73728, Staff Cost Red\%=10\% (en-route charges reduction 6.2\%)\& ATFM delay reduction= 0\%

Scenario is viable for Flight Efficiency Gain\%=34\%

For Worst-case FF-cost=73728,
Staff Cost Red\%=60\% (en-route charges reduction 37.2\%), \& ATFM delay reduction= 0%

Scenario viable for Flight
Efficiency Gain\%=4\%

Concluding Remarks

$\square A^{3}$ ConOps can be viable for the Airlines even when the operational performance (ATFM delay and Flight Inefficiency reduction) is very low.
\square As expected A^{3} ConOps will have substantial implications on the role and the staffing level of ANSPs
\square On the basis of these results A^{3} ConOps seems promising from an economic perspective and it should proceed to the next development stage
\square The proposed method could be used to gain knowledge regarding the potential costs and benefits for both stakeholders

THANK YOU FOR YOUR ATTENTION ANY QUESTIONS?

Input Data for CBA

Category of Variables	Variable	Input Value
	Discount Rate	8\%
Time Variables	This Year	2010
	Benefit Start Year	2026
	Benefit End Year	2035
	Final Year	2035
	Implementation Duration	8 years
	Start Year	2013
	Pre-Impl. Start year	2013
	Pre-Imp duration	10 years
Baseline Variables	Aircraft BL number	16759 (2009)
	Aircraft Growth Rate (annual)	3\%
	Annual Retirement Rate	2\%
	BL Annual Flights	10.1 (2009)
	Average Flight Duration (min)	106
	BL Delay per flight TS	1,9 min
	S1 Horizontal BL Flight Path Inefficiency \% (TS)	3.7\%
	Vertical Flight Inefficiency	0.6% (of the jet fuel consumed per flight)
	Jet Fuel Price	655 €/mt
Cost Variables	Forward-fit Cost	€24576 (2010)
	Overall Annual Operating Cost	66.3 M
	Airlines One-off Implementation cost (Training)	3.86 B €
	Total Pre-Implementation Cost	$5.85 \mathrm{M} €$
Benefit Variables	Cost per unpredictable Delay Minute	89.76 €/min
	Cost per flight minute	69.77 €/min
	Incremental Efficiency Gain (\%)	0\%
	Incremental Delay Reduction	0\%

Results from Combined Scenarios: B/C=1.1 (II)

ATFM delay reduction=5\%

Staff Cost Reduction $\%$	One-Off Implem. Cost (in Million $€$)
10	2224.07
20	4448.15
30	6672.23
40	8896.31
50	11120.39
60	13344.47
70	15568.55

© TRANSLOG

CBA Results for ANSPs: Operating Cost Red 0\% iFly

CBA Results for ANSPs: Operating Cost Red 5\% ifly

[^0]: -aTFll Lelay Red or. Horiz. Effiothoy 10%

 * ATFLI [ely Red: E\%. Horiz. Effigenoy. 10%

 Leny Red On. Horiz. Effishoy 20

