

#### AUEB-RC/TRANSLOG

TRANsportation Systems and LOGistics Laboratory Department of Management Science and Technology Athens University of Economics and Business Evelpidon 47A & 33 Lefkados, 113 62, Athens, Greece Tel: +30 210 8203673-5, Fax: +30 210 8203684 Email: translog@aueb.gr, Web site: http://www.translog.aueb.gr

> iFLY Final Presentation Berlin, June 13, 2011

\* Changed "Cost-Effectiveness Analysis" to "Cost-Benefit Analysis" in the revised Technical Annex



Problem Definition
Objectives
Methodology
CBA for the Airlines
CBA for the ANSPs
Concluding Remarks









- □ A<sup>3</sup> ConOps Economic Assessment
- Degree of Concept Maturity
- □ Stage in Project Lifecycle
- High Uncertainty in estimating Benefits and Costs
- □ Consideration of all relevant stakeholders







 Develop and apply Cost Benefit Analysis (CBA) to assess the economic viability of A<sup>3</sup>
 ConOps considering the implications to both Airlines and ANSPs



### **Cost-Benefit Analysis Methodology**









### **Uncertain Benefit variables:**

- Horizontal & Vertical Flight Efficiency Gain (%)
- En-route ATFM Delay Reduction (%)
- ANSPs en-route charges Reduction (%)

### Uncertain Cost Variables:

- Forward-fit per aircraft

### □ Analysis Scenarios definition:

Select a values of B/C from 1 to 2

Determine alternative combinations of cost and benefit variables



## CBA Assumptions for Airlines



- □ Horizontal Flight Efficiency Gain: 0-20%
- □ En-route ATFM delay reduction: 0-20%
- □ En-route ANSPs Charges: 0-62%
- Retro-fit/Forward-fit Cost was assumed equal to 2 (as in SESAR CBA)
- □ Analysis period: 2010-2035
- □ Full scale benefits are encountered by the end of the implementation period (in 2026)



# CBA Results for Airlines: B/C=1 (IRR 8%)





# CBA Results for Airlines : B/C=1.2 (IRR: 9.7%) iFly







ATFM Delay Red: 0%. Horiz, Efficiency: 0%
 XATFM Delay Red: 5%. Horiz, Efficiency: 0%
 +ATFM Delay Red: 10%. Horiz, Efficiency: 0%

■ ATFM Delay Red: 0%, Horiz, Efficiency: 10% ★ ATFM Delay Red: 5%, Horiz, Efficiency: 10% - ATFM Delay Red: 10%, Horiz, Efficiency: 10% ATFM Delay Red: 0%. Horiz. Efficiency: 20%
 ATFM Delay Red: 5%. Horiz. Efficiency: 20%
 ATFM Delay Red: 10%. Horiz. Efficiency: 20%









 ATFM Belay Red: 0%, Horiz, Efficiency, 0% ■ ATFM Belay Red: 0%, Horiz, Efficiency, 10% ▲ ATFM Belay Red: 0%, Horiz, Efficiency, 20% ×ATFM Belay Red: 5%, Horiz, Efficiency: 0% × XATFM Belay Red: 5%, Horiz, Efficiency: 10% • ATFM Belay Red: 5%, Horiz, Efficiency: 20% +ATFM Delay Red: 10%, Horiz, Efficiency, 0% - ATFM Delay Red: 10%, Horiz, Efficiency, 10% - ATFM Delay Red: 10%, Horiz, Efficiency, 20%







- As B/C increases, higher reduction of en-route charges is required for the same level of benefits (ATFM delay reduction & Flight Inefficiency Reduction)
- □ In the most pessimistic scenario (forward-fit Cost= €73728, ATFM delay reduction=0% & Flight Efficiency Gain=0%) the maximum B/C achieved is 1.68 (IRR: 13.3%)
- Viable B/C ratios can be achieved even if the FF Cost is underestimated by a factor 2-2.5 and system performance results to ATFM delay reduction=0% & Flight Efficiency Gain=0%



**Building Analysis Scenarios for ANSPs** 



### Uncertain Cost variables:

- One-off Implementation Cost (Transition & Training Cost)
- Uncertain Benefit Variables:
  - Operating Staff Cost Savings(%)
  - Operating non-staff cost savings(%)

### □ Analysis Scenarios Definition:

Select B/C from 1 to 2
 Determine combinations of values for Staff Cost Savings (%), Non-Staff Cost Savings (%), and one-off implementation cost







□ Analysis Time horizon: 2010-2035

- The (Transition cost/Training cost) ratio was assumed equal to 6
- □ En-route Staff Cost Reduction up to 70%
- □ Operating non-staff cost up to 5%







- The A<sup>3</sup> ConOps changes will have dramatic implications to the en-route ANSPs operations
- This will result to considerable reduction of operating (staff and non-staff) cost
- Transition and Training cost are expected to be the major cost elements for ANSPs
- Overall Service cost is expected to be significantly reduced



# Building Combined Analysis Scenarios



- ANSPs en-route staff cost reduction affects Enroute charges reduction
- Combined analysis scenarios aim to examine the economic implications to Airlines and ANSPs simultaneously
- Define Analysis Scenarios:
  - Select a B/C value
  - Determine alternative combinations of values for the Airlines and ANSPs uncertain Costs and Benefits Variables



## Assumptions for Airlines-ANSPs CBA



- □ %En-route Staff Cost Reduction: 5%-70% (thus Enroute ANSPs Charges Reduction 3.1%-43.4% )
- □ %Operating (non-staff) Cost Reduction:0%-5%
- □ Analysis Time Horizon: 2010-2035
- □ ATFM En-route Delay: 0%-10%







◆ Staff Red.=10% ■ Staff Red.=20% ▲ Staff Red.=30% × Staff Red.=40% × Staff Red.=50% ● Staff Red.=60% + Staff Red.=70%









- A<sup>3</sup> ConOps can be viable for the Airlines even when the operational performance (ATFM delay and Flight Inefficiency reduction) is very low.
- As expected A<sup>3</sup> ConOps will have substantial implications on the role and the staffing level of ANSPs
- On the basis of these results A<sup>3</sup> ConOps seems promising from an economic perspective and it should proceed to the next development stage
- The proposed method could be used to gain knowledge regarding the potential costs and benefits for both stakeholders







### THANK YOU FOR YOUR ATTENTION ANY QUESTIONS?







| <b>Category of Variables</b> | Variable                                         | Input Value                                      |
|------------------------------|--------------------------------------------------|--------------------------------------------------|
|                              | Discount Rate                                    | 8%                                               |
| Time Variables               | This Year                                        | 2010                                             |
|                              | Benefit Start Year                               | 2026                                             |
|                              | Benefit End Year                                 | 2035                                             |
|                              | Final Year                                       | 2035                                             |
|                              | Implementation Duration                          | 8 years                                          |
|                              | Start Year                                       | 2013                                             |
|                              | Pre-Impl. Start year                             | 2013                                             |
|                              | Pre-Imp duration                                 | 10 years                                         |
| Baseline Variables           | Aircraft BL number                               | 16759 (2009)                                     |
|                              | Aircraft Growth Rate (annual)                    | 3%                                               |
|                              | Annual Retirement Rate                           | 2%                                               |
|                              | BL Annual Flights                                | 10.1 (2009)                                      |
|                              | Average Flight Duration (min)                    | 106                                              |
|                              | BL Delay per flight TS                           | 1,9 min                                          |
|                              | S1 Horizontal BL Flight Path Inefficiency % (TS) | 3.7%                                             |
|                              | Vertical Flight Inefficiency                     | 0.6% (of the jet<br>fuel consumed per<br>flight) |
|                              | Jet Fuel Price                                   | 655 €/mt                                         |
| Cost Variables               | Forward-fit Cost                                 | €24576 (2010)                                    |
|                              | Overall Annual Operating Cost                    | 66.3 M€                                          |
|                              | Airlines One-off Implementation cost (Training)  | 3.86 B€                                          |
|                              | Total Pre-Implementation Cost                    | 5.85 M€                                          |
| Benefit Variables            | Cost per unpredictable Delay Minute              | 89.76 €/min                                      |
|                              | Cost per flight minute                           | 69.77 €/min                                      |
|                              | Incremental Efficiency Gain (%)                  | 0%                                               |
|                              | Incremental Delay Reduction                      | 0%                                               |













◆ B/C=1 ■ B/C=1.1 ▲ B/C=1.2 × B/C=1.3 × B/C=1.5 ● B/C=2





◆B/C=1 ■B/C=1.1 ▲B/C=1.2 ×B/C=1.3 ×B/C=1.5 ●B/C=2

