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Abstract : This paper proposes the use of Sequential Monte Carlo (SMC)
as the computational engine for general (non-convex) stochastic Model
Predictive Control (MPC) problems. It shows how SMC methods can
be used to find global optimisers of non-convex problems, in particular
for solving open-loop stochastic control problems that arise at the core of
the usual receding-horizon implementation of MPC. This allows the MPC
methodology to be extended to nonlinear non-Gaussian problems. We
illustrate the effectiveness of the approach by means of numerical examples
related to coordination of moving agents.

1 Introduction

Nonlinear Model Predictive Control (MPC) usually involves non-convex optimisation
problems, which in general suffer from the existence of several or even many local
minima or maxima. This motivates the use of global optimisation algorithms, which
guarantee asymptotic convergence to a global optimum. In most cases such algorithms
employ a randomised search strategy to ensure that the search process is not trapped
in some local mode. A popular example is Simulated Annealing (SA). Apart from the
issue of multi-modalities of costs or rewards, solving such problems becomes even more
complicated when stochastic processes are used to represent model uncertainties. In
general, stochastic decision problems involve nonlinear dynamics with arbitrary distri-
butions on general state spaces. In this paper we are mostly interested in continuous
state spaces. Furthermore, the costs or rewards are usually expressed as expectations
over relatively high-dimensional spaces. Monte Carlo methods are currently the most
successful methods for evaluating such expectations under very weak assumptions,
and have been widely applied in many areas such as finance, robotics, communica-
tions etc. An interesting point, which is overlooked often by the control community, is
that Monte Carlo has also been applied for performing global optimisation, mainly in
inference problems such as Maximum Likelihood or Maximum a Posteriori estimation,
as presented recently in [1, 9, 13].

Still, solving stochastic optimal control problems on continuous state spaces for
nonlinear non-Gaussian models is a formidable task. Solutions can be obtained by
solving Dynamic Programming/ Bellman equations [3], but there is no analytical so-
lution to this equation — except in very specific cases, such as finite state spaces or
linear Gaussian state-space models with quadratic costs. In general, the value func-
tion takes as argument a probability distribution, and it is extremely difficult to come
up with any sensible approximation to it. This is why, despite numerous potential
applications, the literature on applications of Monte Carlo methods for control of non
linear non Gaussian models is extremely limited [2].

MPC combined with Monte Carlo methods provides a natural approximation of
solving the Bellman equation in the stochastic case, just as deterministic MPC can
be viewed as a natural approximate method for solving deterministic optimal control
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problems [12]. For details of how MPC relates to dynamic programming and the
Bellman equation, with emphasis on the stochastic case, see [4].

The most developed approaches for exploiting Monte Carlo methods for optimisa-
tion are based on either Markov Chain Monte Carlo (MCMC) methods [15], or Sequen-
tial Monte Carlo (SMC) methods [5, 7]. Considerable theoretical support exists for
both MCMC and SMC under very weak assumptions, including general convergence
results and central limit theorems [15, 5].

To date the control community has investigated the use of MCMC as a tool for
evaluating approximate value functions, and SMC, in the guise of ‘particle filters’, for
state estimation — see [14] for a setting closely related to MPC. Recently, in [10, 11] the
authors proposed to use a MCMC algorithm similar to Simulated Annealing developed
in [13], for sampling from a distribution of the maximisers of a finite-horizon open-loop
problem, as the key component of an MPC-like receding-horizon strategy. As in any
stochastic optimisation algorithm, the long execution times needed imply that these
methods can be considered only for certain control problems, in which fast updates
are not required. But even when restricted to such problems, the computational
complexity of the algorithms can be very high. It is therefore important to take
advantage of any structure that might be available in the problem. SMC seems to
manage this better than MCMC in sequential problems, the computation can also be
parallelised and requires less tuning than that required bu standard MCMC algorithms.

In this paper we investigate the use of a Sequential Monte Carlo (SMC) approach,
in contrast to the Markov chain Monte Carlo (MCMC) approach we proposed pre-
viously. This approach of using SMC methods for the sampling of global optimisers
within MPC, is to the best of our knowledge novel. We propose some specific algorith-
mic choices in order to accelerate convergence of Simulated Annealing methods when
applied to stochastic MPC problems. We shall demonstrate the effectiveness of our
approach by means of numerical examples inspired from Air Traffic Management.

2 Problem Formulation

In general control problems one focuses on dynamical models, in which a specified user
or controller or decision maker influences the evolution of the state, Xk ∈ X , and the
corresponding observation, Yk ∈ Y, by means of an action or control input, Ak ∈ A,
at each time k. Consider the following nonlinear non-Gaussian state space model

Xk+1 = ψ (Xk, Ak+1, Vk+1) , Yk = φ (Xk, Ak, Wk) ,

where {Vk}k≥1 and {Wk}k≥0 are mutually independent sequences of independent ran-
dom variables and ψ, φ are nonlinear measurable functions that determine the evo-
lution of the state and observation processes. The decision maker tries to choose
the sequence {Ak}k≥0, so that it optimises some user specified sequence of criteria

{Jk}k≥0.

In this paper we shall restrict our attention to the fully observed case (Yk ≡
Xk), although our results can be generalised for the partially observed case as well.
Furthermore, as our goal is to develop an algorithm for use with MPC, we will focus
only on finite horizon problems. We refer the interested reader to [2] for a treatment
on how SMC has been used for the infinite horizon case using stochastic gradients
instead.

Conditional upon {Ak}k≥0, the process {Xk}k≥0 is a Markov process with X0 ∼ µ

and Markov transition density f (x′|x, a), so that we can write

Xk+1| (Xk = x, Ak+1 = a) ∼ f ( ·|x, a) . (1)

These models are also referred to as Markov Decision Processes (MDP) or controlled
Markov Chains.

We will now formulate an open loop problem solved at each MPC iteration. Let
us introduce a measurable reward function h : X ×A → R+, for the following additive
reward decision problem. At time k − 1, the action Ak−1 has been selected, the state
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Xk−1 is measured and then at time k one wants to maximise the function Jk defined
as

Jk (Ak:k+H−1) = E

[
k+H−1∑

n=k

h (Xn, An)

]
, (2)

where Ak:k+H−1 denotes the joint vector Ak:k+H−1 = [Ak, ..., Ak+H−1] and the expec-
tations are with respect to the joint distribution of the states pAk:k+H−1(xk:k+H−1),
giving

Jk (Ak:k+H) =

∫

XH

(
k+H−1∑

n=k

h (xn, An)

)

︸ ︷︷ ︸
u(Ak:k+H−1,xk:k+H−1)

(
k+H−1∏

n=k+1

f (xn|xn−1, An)

)
f (xk|Xk−1, Ak)

︸ ︷︷ ︸
pAk:k+H−1

(xk:k+H−1)

dxk:k+H−1,

(3)
where we define

u(Ak:k+H−1, xk:k+H−1) =

k+H−1∑

n=k

h (xn, An) . (4)

We aim to perform the following maximisation

A∗k:k+H−1 = arg max
Ak:k+H−1∈AH

Jk (Ak:k+H−1) ,

in order to obtain a solution for the open loop problem.
Of course, this is not a trivial task. If the control input took its values in a finite

set A of cardinality K, it would be possible to approximate numerically this cost
using particle methods or MCMC for the KH possible values of Ak:k+H−1 and then
select the optimal value. In [2] the authors present in detail how to get a particle
approximations of Jk using standard SMC results for filtering. Of course, in practice
such an approach cannot handle large values of H or K. Moreover if Ak takes values
in a continuous space A and Jk (Ak:k+H−1) is differentiable with respect to Ak:k+H−1,
one can still resort to a gradient search in AH . This has been presented in [2]. Using
gradients would imply, as in any local optimisation method, that multiple runs from
different initial points are needed to get a better estimate of the global optimum, but
still it is difficult to get any formal guarantees. This motivates the use of Monte Carlo
optimisation.

3 Monte Carlo Optimisation

Maximising (3) falls into the broader class of problems of maximising

J (θ) =

∫

Z
u(θ, z)pθ(z)dz, (5)

where we define θ = Ak:k+H−1 and z = xk:k+H−1, while θ∗ are the maximisers of J . In
this section we show how Monte Carlo simulation can be used to maximise J. In [1, 13]
MCMC algorithms have been proposed for this and in [10] the authors explained how
they can be combined with MPC. More recently, in [9] SMC methods have been applied
for solving a marginal Maximum Likelihood problem, whose expression is similar to
(5). In the remainder of this paper we shall focus on deriving a similar algorithm
to [9], intended to be used for MPC. The main difference of our approach is that
our problem formulation exhibits a slightly different structure. In fact, we are using
a dynamical model intended for control problems, and therefore are doing inference
to compute time varying optimal actions instead of static parameters, which is the
purpose of parameter estimation. Although the difference seems subtle at first glance,
it is important and leads to similar algorithms showing completely different behaviour.

The basic idea is the same as in [1, 9, 13]. First we assume u(θ, z) is nonnega-
tive. Note that this might seem restrictive at the beginning but we remark that any
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maximisation remains unaffected with respect to shifting by some finite positive con-
stant. As in the standard Bayesian interpretation of Simulated Annealing, we define
a distribution π̃γ

π̃γ(θ) ∝ p(θ)J (θ)γ ,

where p(θ) is an arbitrary prior distribution, which contains the maximisers θ∗ and
encapsulates any prior information on θ not captured by the model. As such infor-
mation is not likely to be available, uninformative priors might be used. Under weak
assumptions, as γ → ∞, π̃γ(θ) becomes concentrated on the set of maximisers of J
[8].

We now introduce γ artificial replicates of z, all stacked into a joint variable z1:γ

and define the distribution πγ

πγ(θ, z1:γ) ∝
γ∏

i=1

u(θ, zi)pθ(zi).

It easy to show that the marginal of πγ is indeed proportional π̃γ , i.e.

π̃γ(θ) ∝
∫

πγ(θ, z1:γ)dz1:γ .

We now define a strictly increasing integer infinite sequence {γl}l≥0, which will play the
role of the inverse temperature (as in SA). For a logarithmic schedule one can obtain
formal convergence results [13]. For a large l, the distribution πγl(θ, z1:γl) converges to
the uniform distribution of the maximisers of J , [8]. In practice logarithmic schedules
lead to slow convergence; more quickly increasing rates and finite sequences {γl}l≥0

are therefore used. In general it is impossible to sample directly from πγ , hence various
Monte Carlo schemes have been proposed. In [1, 13] this is achieved by MCMC, and
in [9] an SMC sampling approach was proposed for a Maximum Likelihood problem,
based on the generic SMC algorithm found in [6]. The SMC approach can achieve
more efficient sampling from πγ , and avoids some of the fundamental bottlenecks of
MCMC-based optimisation.

4 Stochastic Control using MPC based on SMC

SMC is a popular technique, applied widely in sequential inference problems. The
underlying idea is to approximate a sequence of distributions πl(x)1 of interest as a

collection of N discrete masses of the variables (also referred as particles {X(i)
l }N

i=1),

properly weighted by a collection of weights {w(i)
l }N

i=1 to reflect the shape of the
distribution πl. As πl can be time varying, the weights and the particles are propagated
iteratively by using a sequential importance sampling and resampling mechanism,
which uses the particles of iteration l − 1 to obtain new particles at iteration l. We

shall be referring to {X(i)
l , w

(i)
l }N

i=1 as the particle approximation π̂l of πl and this
should satisfy

N∑
i=1

w
(i)
l δ

X
(i)
l

(dx)
N→∞→

a.s.
πl(dx),

where δ is a Dirac delta mass. For more details, see [5, 6, 7]. In Figure 1, we set out
an SMC algorithm which can be used for the MPC problem defined in Section 2.

Steps I) 1-3 of the algorithm are iterated recursively to obtain a particle approx-
imation for the maximisers of Jk. Referring to the general description of SMC in
the previous paragraph, one can associate πγl with πl. We shall be using iteration
number l, to index the propagation of πγl . As we cannot run an infinite number of
iterations, we shall terminate the iteration at l = lmax. Note that l should not be
confused with the time index k of Section 2 regarding the real time evolution of the
state. To avoid this, we define θk = Ak:k+H−1 and zk = xk:k+H−1, and also add

1x is not meant to be confused with xk. Later it will be apparent that we shall be using
(θk, zk,1:γl

) as the variable of interest.

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

4



Regular Paper

At time k,

• I) For l = 1, ..., lmax :

1. Sampling new particles:

• For each particle i = 1, ..., N sample:

A
(i)
k:k+H−1,l ∼ ql(·|X(i)

k:k+H−1,1:γl−1
, A

(i)
k:k+H−1,l−1)

• For each particle i = 1, ..., N sample replicas of the joint state

trajectory, for j = γl−1 + 1, ..., γl ,X
(i)
k:k+H−1,j ∼

k+H∏
n=k

f(xn|xn−1, A
(i)
n,l).

2. Weighting particles: for each particle i = 1, ..., N assign weights

w
(i)
l = w

(i)
l−1

γl∏
j=γl−1+1

u(A
(i)
k:k+H−1,l, X

(i)
k:k+H−1,j), normalise w(i)

l =
w

(i)
l

N∑
j=1

w
(j)
l

.

3. Resample, if necessary, to get new particle set

{(A(i)
k:k+H−1,l, X

(i)
k:k+H−1,1:γl

)}N
i=1 with equal weights w

(i)
l = 1

N .

• II) Compute the maximiser estimate Âk:k+H−1

• III) Apply Âk as the action of time k.

Obtain measurement Yk = Xk and proceed to time k + 1

Figure 1: SMC Algorithm for MPC

a subscript k to πγ to show the real time index. At each epoch k , we are inter-
ested in obtaining lmax consecutive particle approximations of πk,γl(θk, zk,1:γl), where
zk,1:γl = [zk,γ1 , ..., zk,γl ]

2. At each iteration l, we obtain particle approximations π̂γl ,

{(Θ(i)
k,l, Z

(i)
k,1:γl

), w
(i)
l }N

i=1, by propagating the particles of the previous approximation

π̂k,γl−1 , {(Θ(i)
k,l−1, Z

(i)
k,1:γl−1

), w
(i)
l−1}N

i=1, weighting the new particles and then resam-

pling.
We now explain briefly how steps 1 to 3 can be derived. Suppose we are at epoch

k and iteration l. For the sampling step, we assume in this paper that we can sample
from the model of the state, pθk (zk), by repeatedly sampling from each transition
density f . This is not always possible, but for most practical control problems it
is. If one cannot sample directly from f then importance sampling can be used. For

every particle i, to get a sample Z
(i)
k,j = X

(i)
k:k+H−1,j , we use the previous measured state

Xk−1 and then repeatedly sample X
(i)
n,j ∼ f(·|X(i)

n−1,j , A
(i)
n,l) for n = k, ..., k+H−1. For

sampling new particles Θ
(i)
k,l, an importance sampling approach has to be used at each l.

We shall be using an importance distribution ql to obtain Θ
(i)
k,l ∼ ql(·|Z(i)

k,1:γl−1
, Θ

(i)
k,l−1)

by simulation. We have intentionally chosen ql to be varying with l and to depend on
Zk,1:γl as this is more convenient for the general design setting. We shall not provide
details on how to design ql, as this depends on the problem specifics [7]. We shall refer
the reader again to [5, 6] for a more general treatment.

For the weighting step we use

πk,γl

πk,γl−1

∝
γl∏

i=γl−1+1

u(θk, zi,k)pθk (zk,i)

2Note that zk,1:γl
is the stacked vector of the γl artificial replicates of xk:k+H−1 and n is

used as a sequence index for the interval k : k + H − 1.
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to obtain
w

(i)
l

w
(i)
l−1

as an importance ratio proportional to
γl∏

j=γl−1+1

u(Θ
(i)
k,l, Z

(i)
k,j). To ob-

tain u(Θ
(i)
k,l, Z

(i)
k,j) – see (3) and (4) – one can evaluate h

(
X

(i)
n,j , A

(i)
n,l

)
point-wise at

each step n during the sampling stage, and then get the total value of u(Θ
(i)
k,l, Z

(i)
k,j).

After normalising the weights one can perform a resampling step according to the

multinomial distribution {(Θ(i)
k,l, Z

(i)
k,1:γl

), w
(i)
l }N

i=1, if the variance of the weights is low;

see [7] for details.
As as regards step II, after having obtained the particle approximation π̂k,γlmax

,one

could use in principle any sample Θ
(i)
k,lmax

from the final particle set as the estimator of

θ∗k, where θ∗k is the maximiser of Jk(θk). Given that π̂k,γlmax
should converge close to a

uniform distribution over the set of θ∗k, then any sample Θ
(i)
k,lmax

should be sufficiently

close to θ∗k. To improve things one could either choose a sample randomly according
to its weight as in resampling, or in a deterministic fashion, by choosing the sample
with the maximum weight. In many cases, such as if there is some symmetry in the
location of the maximisers, this should be much better than using the empirical mean
N∑

i=1

w
(i)
lmax

Θ
(i)
k,lmax

to compute θ̂k.

We can use this open loop solution for performing an MPC step at step III. Once

Âk:k+H−1 is computed, we then apply Âk. Then we proceed to time k + 1 and repeat
steps I-III for optimising Jk+1.

5 Numerical Examples

In this section we demonstrate how the proposed algorithm can be used in navigation
examples, where it is required to coordinate objects flying at constant altitude, such
as aircraft, UAVs, etc. We consider a two-dimensional constant speed model for the
position of an object controlled by changing its bearing

Xk+1 = Xk + vτ [sin φk+1, cos φk+1]
T + bk+1 + Vk+1, (6)

where v is the speed of the object, τ is a measuring period, φ is the bearing , bn

represents the predicted effect of the wind and Vk
iid∼ N (0, Σ). Although this is a linear

kinematic model with Gaussian added noise, the algorithm in Figure 1 can handle
nonlinear and non-Gaussian cases as it requires no assumptions on the dynamics or
distributions.3 We shall be using some way points αn that the object is desired to
pass through at each time n. We shall encode this in the following reward at time k,

Jk(φk:k+H−1) = E[

k+H∑

n=k

(c− ‖Xn − αn‖2Q − ‖φn − φn−1‖2R)],

where c > 0 is sufficiently large to ensure c − ‖Xn − αn‖2Q − ‖φn − φn−1‖2R ≥ 0, and
Q, R ≥ 0 are matrices of appropriate sizes.

We shall be investigating a number of scenarios. Firstly assume there are three
way-points to be cleared, such that α1 = α2 = ... = αH1 , αH1+1 = ... = αH2 and
αH2+1 = ... = αH . If a single object obeying (6) starts at some initial position, then
choosing a maneuver to maximise Jk means that it should pass through the points and
stay near the check points as long as possible. The result of applying the algorithm of
Figure 1 is shown in Figure 2(a).

We proceed by adding additional objects that also obey the dynamics of (6). Sup-
pose that safety requirements impose the constraint that objects should not come
closer to each other than a distance dmin. This makes the problem much harder as
one has to ensure that constraints are not violated and the constraints have a signifi-
cant effect on the multi modality of the reward. Let Xj

k denote the position of the jth

3Also non-convex constraints can be added.
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object. The feasible space XH is modified so that XH = {Xj
n ∈ R2 :

∥∥Xj
n −Xi

n

∥∥ ≥
dmin, ∀i 6= j, n = k, ..., k + H − 1}. Moreover, all expectations presented so far, for
example equation (3), should be defined over the new feasible spaces for each object.
To account for this we could modify the instantaneous reward to h

(
xj

n, Aj
n

)
1

X
j
0:n∈XH ,

where 1x∈B is an indicator function for the set B. Such a simple penalty approach

means that no reward should be credited if a sampled trajectory Z
j,(i)
k,j does not obey

the constraint and its corresponding weight should be set to zero. This is a simulation
based approach to deal with constraints, i.e. we propagate state samples only from
the feasible region of the state space. We also assume that the initial condition of the
system is not in violation of the constraint. Then, given that the SMC optimisation
algorithm uses a large number of particles and samples many replicates of the state
trajectories, this should allow safe decisions to be made. For a finite number of sam-
ples one could also obtain expressions for the probability of violating a constraints,
e.g. using the Chebychev inequality. In practice, when using large number of particles
the violation probability was observed to be very low ( 10−7).

We have verified this using two different scenarios. In the first one seen in Figure
2(b), two objects flying in parallel towards the same direction, try to approach parallel
way-points. MPC was used for repeated number of runs and no conflict between two
objects took place. Further scenarios are depicted in Figures 2(c) and 2(d). These
show a more complicated problem, in which four objects are directed towards each
other and their way-points would lead them to a collision if constraints were not taken
into account. In Figure 2(c) we plot the open loop solution of the problem at time
k = 1 for a random disturbance sequence and in Figure 2(d) the MPC solution. We
see that three objects try to cruise as closely as possible between their way-points and
orbit each way point for some time, while one orbits waiting for the others. Again no
conflict took place in multiple runs.

As a concluding remark, we would like to stress that little tuning was done to
produce the results shown here. Also, we have not used any structural properties of
Linear Gaussian systems with quadratic costs and just implemented the algorithm
in Figure 1. The examples show early results from ongoing work, but they already
demonstrate that the proposed SMC algorithm can be effective for non-convex decision
problems.
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