Preprint Proceedings IEEE Conference on DecisiahGontrol, New Orleans, 12-fDecember 2007

Probabilistic Reachability Analysis for Large
Scale Stochastic Hybrid Systems

Henk A.P. Blom, G.J. (Bert) Bakker and Jaroslavdtuy

Abstract—This paper studies probabilistic reachability
analysis for large scale stochastic hybrid system{S&HS) as a
problem of rare event estimation. In literature, ad/anced rare
event estimation theory has recently been embeddedthin a
stochastic analysis framework, and this has led teignificant
novel results in rare event estimation for a diffupn process
using sequential MC simulation. This paper presentshis rare
event estimation theory directly in terms of probalilistic
reachability analysis of an SHS, and develops novéheory
which allows to extend the novel results for applation to a
large scale SHS where a very huge number of rare ddirete
modes may contribute significantly to the reach prbability.
Essentially, the approach taken is to introduce anggregation
of the discrete modes, and to develop importance realing
relative to the rare switching between the aggregain modes.
The practical working of this approach is demonstragd for the
safety verification of an advanced air traffic contol example.

Index Terms— Air transportation, Collision processes,
Monte Carlo methods, Risk analysis, Safety, Sequeat
estimation, Stochastic systems

I. INTRODUCTION

HIS study is motivated by the problem of safet

verification of a future air traffic concept of aption
through the analysis of reach probabilities. Fromoatrol

some prescribed unsafe set remains below some give
maximum level, and that the same dynamic programmin
based computation of maximal safe sets can be Ude.
dynamic programming approach becomes computationall
intractable when the SHS considered is of largéestype.
Prandini and Hu [3] developed a Markov chain
approximation based method for the computationeath
probabilities for a continuous time SHS. This wde t
dynamic programming challenge was avoided, howeher
computational load of their method prohibits apgicn to
a large scale SHS.

In theory, reach probability estimation can be dbye
simulating many trajectories of the process comsidleand
to count the fraction of cases where the simul&tgdctory
reaches the unsafe set within some given pefio@hen
the reach probability value is very small then lnenber of
straightforward MC simulations needed is impradiyca
large. Rare event estimation literature forms eeipiilly
rich source of information for speeding up MC siatidn
through combining methods from large deviation and
)}mportance sampling theories, e.g. [4], [29]. Anrlea
successful development in this area is sequentiel M
simulation for the estimation of the intensity @dration

theoretic perspective such an advanced concept Rt penetrates a shield of absorbing material uolear

operations is a blueprint of a controlled Stocltaklybrid
System (SHS). Recently, Sastry and co
studied the optimization of the control policy ofiscrete-
time SHS, such that the probability of staying withome

prescribed safe set remains above some prescribtgﬁ
minimum level. [1] developed a theoretical framekvor

which expressed the reach probability as a muitigive

physics, e.g. [5]. More recently this approach ladso

-workers ZL]-[ found application in non-nominal delay time and slos

estimation in telecommunication networks, e.g.
L’Ecuyer at al. [7] provide a very good recent oxew of
se sequential MC simulation developments.

In order to exploit rare event estimation theoryhim
probabilistic reachability analysis of controlleHS, we are

[6].

function, and this was used to develop a dynamf@ need of establishing a theoretically unambiguous

programming based approach to compute probabilis

maximal safe sets, i.e. initial states of a systemwhich
control policies exists that assure the reach pitibato
stay below some given value. [2] showed this pnobie be

complementary to the problem of how to optimize th

control policy of an SHS such that the reach prdibtabf

gonnection between the two concepts. Implicitlyjs th
connection has recently been elaborated by Del Mard
co-workers [8]-[11]. They embedded theoretical [te/s
equations, which supported the development of athén
MC simulations, within the stochastic analysisisgtthat is
typically used for probabilistic reachability ansily. They
subsequently showed that this embedding provides a
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sequential MC simulation for rare event simulation.
The aim of this paper is to present a part of the

Netherlandsframework developed by Del Moral et al. [8]-[11] @
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probabilistic reachability setting, to further déye this Following Del Moral and co-workers [8]-[11], this
for a large scale SHS, and to demonstrate its ipehaise probability can be characterized in the form of a
for safety verification of an advanced air traffiperation. multiplicative function the terms of which are defd
In [12]-[13], the practical use of the approactDefl Moral through an arbitrarily assumed nested sequencdoséd
[8]-[11] for safety verification of an advanced draffic g psetd = D,0D,, 0...0 D, with the constraint
operation has already been demonstrated for soewfisp
scenarios. In these scenarios, the main contribsitio the that P(§ 1 B) =0. In order to derive a multiplicative
reach probability value came from diffusion behavili  functional characterization of the hitting probitigilwe set
also became clear that the same sequential MC il
approach failed to work for scenarios of the saméraific
operation where the reach probability is determibgdare that{S} hits subsek, i.e.
switching between modes. This paper is _aimed tadlean 7, =inf{t >0; s, 0D} 1)
such more demanding rare event estimation problems
large scale controlled SHS. Essentially the apprdacto  which impliesP(CXJ[0,T); sO D,)= A7, < T).
intr((j)ducle an aggregation of t?e discrete T]Odefpmafqdl We also define {0,1}-valued random variables
to develop importance sampling approaches for dnge _ i
scale SHS which work relative to the switching kestw the {Xio K=0,..,m} as follows:
aggregated modes. Xe=1 if 1, <T ork=C
The paper is organized as follows. Section Il depela
factorization of the reach probability. Section é&kplains
the approach of [8]-[11]. Section IV develops the By using theseT, and ), definitions and the fact that
aggregation mode process and characterizes kejorsla .
with the controlled SHS. Section V develops a noveﬁaCh component G[fs} that may hit anyD,, k=1,.m,
sequential MC simulation approach for estimatingche has continuous paths, we can write the probabitity
probabilities. Section VI applies this approach dode {s} hiting D before T as a product of conditional
estimating reach probabilities for an air traffaesario for
which the approach of [8]-[11] falls short.

I, =0 and define7,, k=1,..,m, as the first moment

=0, else.

probabilities of reachind, given D,_; has been reached

at some earlier moment in time, i.e.
[l. FACTORIZATION OF REACH PROBABILITY P(r. <T)=ELy.] =H m 1= m 5 | 4
Throughout this and the following sections, allcétastic " =Xl = DX - u XX iea =

processes are defined on a complete stochastis (3sF, m m ()

F, P,T) with (Q, #, P) a complete probability space, and F = D P 1 <T|Tk—1 <T ):l:l 17

an increasing sequence of smalgebra’s on the positive R ) )
A with y, = P(7, <T‘rk_l <T)

time lineT=R., i.e. F=1J,(F,tUT), %}, taini Il . _ .

Ime fine € {j( t ) } Jcontaining a With this, the problem can be seen as one to eitha

P-null sets ofFand 7 [0 ¥ 0 # O F for everys<t. conditional probabilities); in such a way that the product
Let us denoteE' =R"xM, with M a discrete set. of the estimators J, is unbiased. Because of the

I
Let £ be the Borelg —algebra of E'. We consider a multiplication of the various individualfj, estimators,
time-homogeneous strong Markov process which &s® i \yhich depend on each other, in general such a ptaday

generalised stochastic hybrid procds§, 6} [16], [19]- be heavily biased. Garvels et al. [17]-[18] was fingt to
show that for a discrete-time Markov process tpigraach
guarantees unbiased estimation. The key novelf@]dfi1]

values inV . The first component oﬁxt} equalst and the was to develop a sequential MC simulation apprdacthe

other components 0{)([} form an R"? valued cadlag estimation of th¢/ 's in (2), which guarantees unbiased

process{S} . The problem considered is to estimate th&stimation of P(7,, <T) under the condition thats} is
" closed subset (or is embedded in) a strong Markov process.

[21], with{ X} assuming values ilR" and{6} assuming

probability that{s} hits a given “small
D OR"™ within a given time period[0,T), i.e. ll. SEQUENTIAL MC SIMULATION
P(x0[0,T); sO D). For the proces§ X, 8} we follow the approach of [8]-
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[11] to characterize how the evolution proceedsmfro Q, or when the firstX-component reached ; the end

I, 0Tto 7, OT . For amyBOE", let Pg . (BID)
denote the conditional probability of

$ = (X, or 6, or) B given ). =1. Under the

points in Q, form an empirical density/Z, as an
approximation of P |, (.]2). This cycle repeats frofQ,

to , ..., and finally fromQ_ . to = Q. During the
assumption thatP(s, [0 D) =0, we characterize the < y Qni0Qn=Q 9

following recursive sequence of transformations k-th cycle, a fractiony, of the N simulated trajectories

arrives atQ, . The product of thesén fractions forms an

1) 0T |10 T, 1
pfk—1|Xk—1( | ) p5k|Xk—1 ( | ) pfk|Xk (l ) estimator fOfP(Tm <T)

{ Using the recursive characterization of the cooddl
Vi density, [8],[10] have also shown that the procafcthese

fractions J, forms an unbiased estimate of the probability

Because{ X, 6} is a strong Markov proces§{} is a of {s} tohitthe setD within the time period0,T), i.e.

Markov sequence. Hence the prediction step satisdie mo_ . m _
Chapman-Kolmogorov equation: E[ |_| k=1 Vk] - |_| k=1 Vi = A7 <T)

Pe ., (BID) = .[E, P, (BIS) By, (& [1) (3) In addition there is a bound on thé estimation error, i.e.:
Next we characterize the conditional probabilityediching m o pm < Cp
the next subset: E(l_l 1 |_| kzlyk) = \/N— )

p
=P(r, <T|r,,<T)= =1 =1)=
£ ( “ l Kt ) P(Xk |Xk_1 ) with Cpa finite constant which depends on the simulated

= E[)(k |Xk—1 =1] = _[E,le $) pgkp(k_l(dﬂl)' (4)  scenario and the sequence of nested subsets ad{f@¢d
N develops some complementary error bounds.
where Q = (0,T)x D xM. Application of this IPS algorithm to air traffic epation

Similarly, the condition step satisfies, for aB/] &' may work well for specific scenarios where rarecdite
modes are not significantly contributing to the area

.[Ble (g)p{kl)(k{l (d'11) 5) probability [12]-[13]. However, there also are ralat

scenarios which do not satisfy the latter conditibnthe

SRS Sllica next section we develop theory to handle such cases

With this, the J/, ’s in (2) are characterized as a solution of

the set of recursive equations (3)-(5). Followi@-[LL1], V. AGGREGATIONOF MODES

this recursive characterization can numerically be In [14]-[16], hybrid versions of the baseline IPS
approximated through a sequential MC simulation t@lgorithm [8]-{11] have been developed, which take

. L account that rare discrete modes may contribute
< o -
estimate P(Tm T). This is referred to as the II:)SS|gn|f|cantIy to the reach probability to be estieth In

(Interacting Particle System) algorithm, and worés [14], the hybrid IPS version simulates another, enor
follows.

frequent  switching, M -valued process {g}  and
Simulate N, random trajectories of x,6} over a 9 P L4

compensates importance weights for the differemtevden
[0,T), each of which starts from a random initial, =
{6} and{6}

condition ((0,5,),6,), with 5,00 D,. Each simulated

. In [15], the hybrid IPS version uses exact

probabilistic equations for the evolution {)ﬂ} rather than
trajectory stops ar; LT , i.e. upon hittingQ, or when the performing simulations. Both hybrid IPS versionsample

first X-component reached . The full hybrid states of at the end of each IPS cycl , X-values from7z, (.,0)

these trajectory end points form an empirical dgn&, as for each moded 1M , leading to a total oprx |M |

an approximation ofpg , (-|1). This empirical density is 5 icjes, where] M | is the number of elements iV .

used to generate (i.e. to resamphd}) initial conditions of When | M | is very large, then these hybrid IPS approaches
trajectories which are subsequently simulated uriting are computationally intractable.
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In order to identify all particles that arrive &), before

The idea is to improve the situation for very lald¥l | e T, the prediction over time stéphas to be done up to
through application of the hybrid IPS approaches nd/htimes. After these prediction steps, there is margntee

to{ } but to aK -valued proces§x} with | K k<|M | that for eachk K some minimum number of particles
In order to accomplish this, we introduce dhave arrived atQ, . Hence we resample th@, -arrived

partition {M,, KK}, such that UMK =M and particles such that we regaier particles for each

o k K. In order to make this possible, in Theorem 2 we

MKHMK' ={} for k£, and define aK-valued provide a characterization of the (conditional) hmbilities
P, and P, 5, , as a function ofp, , , for arbitrary

aggregation mode proce%&’t} as follows:
_ ) stopping time7T and time stefh. This characterization
Ki (@) =k, if Q(w)DMK. _ (6) allows to sample a fixed number of particles per
Because the evolution of the aggregation mode BEOC&yggregation moder JK , and to sample for each particle

{Kt} depends of the evolution <{f9t} , {Kt} may inherit a novel @ value conditional on the aggregation mode value.

rare mode switching fron{ ¢9t} In order to avoid these Thaorem AHierarchical interaction)
rare effects in the evolution of particles, we atfefine a If p, («) >0 for arbitrary stopping time , then
r+h

(dXB1K)= D Ry q (71 %6).

oM,

P o Ox8)/p. &) (8)

K-valued Markov chain{Kt}with known non-rare
pxr,9r|/(

T+h

transition rates, and use the transition rates[Ef{} to

determine for each particle a nes¢-value at some time
step h later. The particle weight is compensated with the

corresponding importance switching ratio P, (K) = z J z Py 0 (71 %6).
Py s 1K KOV B, (K1) where k%, e 0,
r+hlfr A Ur r+hlKt

dk & 9
denote the given(k,,X.,8,) particle value, andk Pro 4O ) ©)

denotes the value newly sampled fdy, . . Proof:
By definition of the partitioning{ M,, x K} we have

Next, the prediction of the nevdl.,, particle from the
(X,8,) particle values is done conditional on the newlyPx..,.x, 4, (, dx 6) = Z Ry...x.0 (7, d%0)

nOM,,
sampled K value. Theorem 1 provides a probabilistic _ \
characterization of suck -conditional @ -prediction. - ”%[; Ps,..ix.6 h1x6 )F&,,g, @xo
Theorem 1( -conditional @ -prediction) Dividing left and right hand sides bp, (k) yields (8).
Let T be an arbitrary stopping time, then From the law of total probability we have:
L, (P (11%6) p.)=Y [ p 7,dx8)
pgﬁhlxr!grvknh (,7 I X’ 9’ K) - v ! i KT+h’XT’HT
DL (7)Pg 16 (7'1%6) FOM N
e ) Substitution of the latter in the former yields.(%).E.D.
Proof Using Bayezy)?eld_s: In order to see what Theorem 2 means for the ecabiri
Pg.ix 6, (71 % 6, K) = ) kind of densities that will be used, we assurpg , (.)
Py..i6.. (K |IZ) Pa.x 0. (71 %6) equals an empirical density:
an Peronttn K177) Py 16,0771 % 6) N*
- _ : dx8)=> > w0 . . (d%6) (10)
Substituting p, , (K |77) =1, (17) yields (13). Pes, ( L L g0
Q.E.D.

. Ki K A NX . .
The prediction of the-part of the particle over time stép with {_X _’9 wk } iz K UK, a gl\_/en s_et of particles.
is done by drawing a sample from, |, , (.| % 86,n). Substituting (10) into (8) and evaluation yields:

+h
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px,,9,|/(,+h(dX’H|K) = Z Fb,+h|x,,€, (’7' XH)

”DMK
N
D> "G s ooy (A O) ], (K)
KUK i=1
NK‘ . '
= ZZ 2 Ps..ix.0 (71 X8,
K'OK i=170M,

@G oy @XO) B, (6) (1)

Similarly, substituting (10) into (9) yields

P, )= Py o (X, 0 )af

«'TK i=170M,,
(12)
The idea is to use equation (11) for resamplil’}{;p

particles fromp, , |, (.|k) for eachk -value once at
i ' Tk

Ti+h
the beginning of a prediction cycle from, to T, ,,.

Equation (12) is used to compensate each partieighty
for this resampling.

V. HIERARCHICAL HYBRID IPSALGORITHM

Similar as in the IPS algorithm for an SHS [12-18],
particle is defined as a triple(X,6,w), wU[0,1],

XxOR" and #0M . Numerical approximations*;/k and

7T are used fory, and pg, (.|1) respectively. When ’

simulating fromz, _, LT to 7, LT, a fraction I/k of the

Monte Carlo simulated trajectories only will rea@l . The

Hierarchical Hybrid Interacting Particle System (H3)
algorithm estimates these fractions and their pcbdiu a
recursive way, using the following steps:

Step 0 generates perk -value Npinitial particles at

k =0, and then starts the cycling through steps 1 tjrou *

3fork:=1,2,..m.
Step 1 extrapolates each particle frajp, UT to

7, UT in time steps of lengtth, using importance
switching for the new K -value and K -conditional

sampling of a newd value. For the latter use is made of the
K -conditional @ -prediction characterization in Theorem 1.

Step 2evaluates the particles that have arrivedt.
For this, use is made of equations (4)-(5).

Step 3resamples from the particles that have arrived at

Q.. In order to drawNp samples perx -value, use is

made of the hierarchical interaction charactemmatin
Theorem 2.
Each of these steps is specified in detail below.

Hierarchical Hybrid Interacting Particle System

(HHIPS) Step 0: Initial sampling fork = 0.

-+ At time t=0 we start with a set ofN“:= N,
particles for each aggregation moald 1 K :
{x", 6", i'\ii,KDK, where the particles are
obtained as follows.
First @' are independently drawn frorp,,,., (LK) .
Then X' {0} xR"™/ D, are independently drawn
from pxolgo([I]H’(’i) with the first component of*"
equal to zero. The initial weights satisfy

p

With this we have}, =1 and

N¥ )
Boor(AX0) =D Y '3, ., (dx6)

«OK i=1

Ji=1..,N,, kK OK.

+ Choose a sufficiently large numbed of equal
discretization steps of time length =T/ J, which
allows to use a numerical integration time step
Choose an appropriate positive value éo< 1/J .

HHIPS iteration cycle: For K =1,.., mcycle over step 1
(prediction), step 2 (assessment) and step 3 (pEBah

HHIPS Step 1. Prediction:
« Start with empty setsS, , K K, to store all particles
that arrive atQ, = (0, T)x D, x M.

For j =1,..., J, iterate over substeps 1.a, 1.b and 1.c.

Substep 1.aSamplek,,, using importance switching.

If K>1 and j =1, then goto substep 1b, else for each
kOK andi =1,..., N*:

If &' =0 then &' =/ andk*' =k ; else,
sample ak*' OK with probability o for each of the

values inK /{ K }, and with probability
1—adK\ —1)for the valuek , and correct the

corresponding weight according to this importance
switching, i.e.
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B e RO
i Kl O if g“'=kK HHIPS Step 2. Evaluate theQ, arrived particles:
o 1-a(K|-1)
0 (< | X g) » The particles which are memorized & , K 0K,
i Kr+h|>(r r ! H ISy 4| . .
o po if ' # Kk provide an estimate of, |, (.|1)and J, .

e The resulting sets of particles ares Renumbering the particles ﬁ’: yields a set of
{(x**,0" & kY. ,k OK  For each

kOK, collect from these particles thosd\N”

particles{ X', 2 LAY 'I\':; with N*the number of

particles inS; .
« Weighted fraction Jj of the Qk arrived particles:

=¥ S1,6) -y S

KTK |=1
NX'20 k=
N0
« For each kUK, renumber the indices of these
K — .
N* particles such that the first index equaiand the * |f N® =0 for all KUK, then the algorithm stops

second index runs ovdt,...,N}. This yields for each  With estimateR, (0,T)=0.
kOK the following new set of ¢ If k=m, then stop HHIPS with the estimate

particle X*', 8" ,a/} ' if N* 20, and an empty R (0T)= |_| oo Vi
set{}if N “ =0. « Foreachk OK andi =1,..., N*:
W=y,

The estimatedp, |, (.|1) satisfies:

particles for which k' =« ie.

Substep 1.bA.,, -conditional prediction o{X_,,,,&,.,) -
For each K 1K, determine the new set of particles.

XK ki iy N¥ .
{x*',8" &}, as follows: Peyy, (A1) = 72 (dx8) = > Zaf '0,es g (A%, )

« For eachk,i for which &' =0, setX*' := X' and KUK =1
—_ . . N*#0
K, L¢
g™ =" . Else, use Theorem 1 to sample a HIPS Step 3.Copy theQk arrived particles through
K,
value 8" from: K, +n-conditional resampling.
K, K i -
pHHhprenKHh(” X", 6", k) + Evaluate aggregated mode probabilitied & 7, using
L, (NP, 4 0 @16 (12)-
(k|D)=¢ (k)=
Z,,DMlm 1P, 45 @'1x67)  Pe
and a new valu&”"' from < ~K i
(Xm —K,i K, HK,i) % .Z_ll,ﬂ%[: p Oranl @l w
XrshlOrsmXe 107 9 1 X ' N¥'20
*  The weights are not changed, i@ " := &/ " . »  For eachx OK independently drawN  random
: Ki ki i = :
Substep 1.cMemorizing particles that arrived @k: pairs (x“,6"), 1=1... NP from the particle

_ i ; spanned empirical measure, using (11):
o If (X 9’(")DQk and &' # 0, then a copy of the P P g (11)

particle{ X*",8*" @'} is stored in the seB .
« Subsequently, we sg"' := 0 in the original particle.

« If j=J, then step 1 is complete, hence go to step 2,
else, repeat substeps 1a,b,c for j+1.
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p (dx 8|«,1)=
% Orli ran Xi ! TABLE 1
N¥' ) IPSCONFLICT LEVEL PARAMETER VALUES
= gk K K 1 2 3 4 5 6 7 8
PIDIDIL N [ A
Pt k |50 |50 | 50| 50| 25| 12% .50 .054
N¥'£0 Nm
ar hi
) O;;(K-,i o dg, 8 ¥ «( i 1000 | 1000 | 1000| 1004 1000 500 25 131
« This vyields, for eachk UK, a set of particles A_k 8 25 | 15 | o 0 0 0 0
min

ST N o
{x", 8", S} 2 with o= @(K)IN,.

« If k<m, then repeat steps 1-3 fér := k+1 and
N“:=N,

In the low risk bearing scenario considered, twaraft
start at the same flight level, some 250 km awaynfeach
other, and fly on opposite direction flight planeald-on
with a ground speed of 240 m/s. This means thdismoi

Remark The key extensions of HHIPS over IPS for annay pe reached after about 500s simulation, heecsefil
SHS [12-13] are: = 600s. The collision reach probability is estimatiedugh

1. Embedding of an aggregation mode process; running ten times the HHIPS algorithnThe aggregation
2. Particles are maintained per aggregation mode; modes chosen are all combinations of the followfigh
3. Importance switching of aggregation mode is usegyel mode values: global communication suppofts or
for the conditional prediction of SHS particles;  ‘jown’, and decision-making (DM) loop of aircrafts ‘up’
4. Hierarchical interaction is used for the resampling, ‘qown’. This leads to a total of four aggregatimode
of particles that reache@,, k=1,..,m- 1 values. The number of particles used is 5,000 per
aggregation mode value; hence 20,000 particlesuseel
per HHIPS run. The time stelp = 1s, anda = 0.001.
Results of these HHIPS runs are presented in T#blgs

VI. FREEFLIGHT AIR TRAFFIC EXAMPLE

We consider a specific free flight operational cptc
that has been developed within a recent Europeseareh
project [22]. In order to use MC simulation for theTabIeII:f/kvaIues estimated by first four HHIPS runs. IPS

estimation of safety risk, we first developed a Bi@ulator  pased estimation typically yields values 0.0 koz 4.

of thgse operathns such that the .S|mulated trajest K Run 1 RUnN 2 Run 3 Run 4
constitute executions of a generalized SHS [23]e Th

. . . . . . . 1 0.993 0.992 0.999 0.999
dimensionality of the resulting MC simulation modelery

R . . : 2 0.295 0.280 0.289 0.294

large, e.g. in simulating two aircraft there arewhbl0? 3 0.040 0.048 0.050 0.047
discrete mode combinations, and the Euclidean statg 4 > 71E-4 > 59E-4 2 69E-4 2 70E-4
go up toR®*® [12]. In [12]-[13], [24] we developed a way| 5 0.206 0.143 0.118 0.233
to cast the air traffic SHS model within the segtiof the 6 0.427 0.539 0.527 0.396
IPS formulation, and used the IPS to evaluate ddimgn 7 0.855 0.858 0.889 0.759
high risk bearing multi-aircraft scenarios. This SIP 8 0.810 0.823 0.827 0.754
approach, however, did not work properly anymoreldav M 1.93E-7 1.86E-7 1.76E-7 1.96E-7

risk bearing scenarios. The aim of this sectiontds
demonstrate that the novel HHIPS works well forfsac  Table Il presents the values fof, which have been

low risk bearing scenario, using the same SHS model estimated during the first four HHIPS runs. Thdneated
The D, 's are defined by three parameters, the values @fean probability of collision between the two adfer
which are given in Table 1 for a sequence of eigited equals 1.8107. The estimated standard deviation is
subsets. Herd, andhy define a cylinder of diametel, and 0.8x10% which shows that the estimated value is quite
heighth, respectively. The\  value is the time period over accurate. It should be noticed that the variationthe
which position and velocity differences between the  fractions per level is significantly larger tharethariation
aircraft are compared. If withify, the predicted position N the product of the fractions. Apparently, thepeledency

difference falls within the Corresponding Cy“ndﬂ'ren Dk between the fractions Vk reduces the variation in the
is said to be reached. The three parametefldpfare such

1n [25] a similar kind of two aircraft encountezemario has been

that its reaching represents a collision betweeratteraft. simulated using a heuristic precursor of the cUrk#IPS,
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multiplication of these fractions.
Table Il shows the percentage in contribution t‘flz]
collision reach probability for each of the fourgaggation
mode values. This shows that the risk contribuisoalmost
completely caused by “global communication down”.

Table 1ll. Contribution to reach probability.
Global DM-loop Share
comm. %

Up Up 0.5

Up Down 1.1
Down Up 98.4
Down Down 0.002

Finally we improved the availability/reliability ofhe
ASAS related systems by a factor 100, and then ucted

the ten HHIPS runs again. This resulted in a 108-fo

decrease of the collision reach probability. Thessults

demonstrate that HHIPS works well for this largalsc

SHS.
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