National Ascepace Laboratory NLR The Netherlands

Rare-event probability estimation with application to air traffic

by

Henk A.P. Blom

e-mail : blom@nlr.nl

Workshop on Stochastic Hybrid Systems; Theory and Applications IEEE CDC, Cancun, Mexico, December 2008

Rare-event probability estimation with application to air traffic

<u>Motivation</u>

- Advanced air traffic example
- Interacting Particle System (IPS)
- Hierarchical Hybrid IPS
- Results for air traffic example
- Conclusions

The capacity 'wall'

© European Organisation for the Safety of Air Navigation (EUROCONTROL)

The capacity "wall" is a safety "wall"

• Capacity relates directly to safety

• The question usually is: how to increase capacity whilst at the same time manage the safety?

• The answer is: by *improving* both capacity and safety per flight

Safety feedback based design

iFly

- Innovative project for European Commission
 - Follow-up of HYBRIDGE project
 - Partners: 11 universities + 7 from AirTraffic/Aviation
 - NLR is coordinator
 - iFly project duration: May 2007- August 2011
 - Web site http://iFly.nlr.nl

Rare-event probability estimation with application to air traffic

- Motivation
- Advanced air traffic example
- Interacting Particle System (IPS)
- Hierarchical Hybrid IPS
- Results for air traffic example
- Conclusions

Autonomous Mediterranean Free Flight (AMFF)

- Future concept developed for traffic over Mediterranean area
- Aircrew gets freedom to select path and speed
- In return aircrew is responsible for self-separation
- Each a/c equipped with an Airborne Separation Assistance System
- In AMFF, conflicts are solved one by one (pilot preference)
- Can AMFF safely accommodate high traffic demand ?

Development of MC simulation model

- Hazard identification
- Defining the relevant Agents
- Developing Petri net for each Agent
- Connecting Agent Petri nets
- Parametrization, Verification & Calibration
- Verification & Calibration

Agents in SHS model of AMFF

Dimensional analysis of SHS model of AMFF

Agent	# of product places	Maximum colour product state space
Aircraft	24 ^{<i>N</i>}	IR^{13N}
Pilot-Flying (PF)	490 ^N	IR^{28N}
Pilot-not-Flying (PNF)	7 ^{<i>N</i>}	IR^{3N}
AGNC	$(15 \times 2^{16})^N$	IR^{45N}
ASAS	48^N	$IR^{37N+21N^2}$
Global CNS	16	{ }
PRODUCT	$\approx 16 \times (3.88 \times 10^{12})^{N}$	$IR^{126N+21N^2}$

Eight aircraft encounter

ATSI 14

ATSI 16

Approaches in Reach Probability Computation

- Markov Chain (MC) approximation (Prandini&Hu, 2006)
- Dynamic Programming (DP) approach (Abate, Amin, Prandini, Lygeros & Sastry, 2006)
- Interacting Particle System (IPS) approach (Cerou et al., 2005)
- Hybrid IPS (Krystul & Blom, 2005, 2006)

Large scale SHS may cause scalability problems

- State space is too large to handle
- Relevant mode switching is rare

Rare-event probability estimation with application to air traffic

- Motivation
- Advanced air traffic example
- Interacting Particle System (IPS)
- Hierarchical Hybrid IPS
- Results for air traffic example
- Conclusions

SHS Reach probability

We consider a time-homogeneous strong Markov process which is a generalised stochastic hybrid process $\{x_{t}, \theta_{t}\}$, with $\{x_r\}$ assuming values in \mathbb{R}^n and $\{\theta_r\}$ assuming values in discrete set \mathbb{M} . The first component of $\{x_t\}$ equals t and the other components of $\{x_t\}$ form an \mathbb{R}^{n-1} valued cadlag process $\{S_t\}$. The problem considered is to estimate the probability that $\{s_t\}$ hits a given "small" closed subset $D \subset \mathbb{R}^{n-1}$ within a time period [0,T), i.e. $P(\tau < T)$ with given $\tau = \inf\{t > 0; s_t \in D\}.$

Reach Probability Factorization

Assume nested sequence of closed subsets

$$D=D_{m}\subset D_{m-1}\subset \ldots \subset D_{1}\,,$$

with the constraints that $P(s_0 \in D_1) = 0$ and each component of $\{s_t\}$ that may hit $D_k, k = 1, 2, ..., m$ has continuous paths *P*-a.s.

We set $\tau_0 = 0$ and define τ_k , k = 1, ..., m, as the first moment that $\{s_t\}$ hits subset k, i.e. $\tau_k = \inf\{t > 0; s_t \in D_k\}$ Then (e.g. L'Ecuyer et al., 2006):

$$P(\tau < T) = \prod_{k=1}^{m} \gamma_k \text{ with } \gamma_k \triangleq P(\tau_k < T | \tau_{k-1} < T)$$

Interacting Particle System (IPS)

- Define a sequence of conflict levels decreasing in urgency $(D_k 's)$ - Most urgent level represents $collision(D_m = D)$
- Simulate N_p particles; initially all outside D_1 (less urgent level)
- Freeze each particle that reaches the next urgent level before T
- Make N_p copies of frozen particles
- Repeat this until the most urgent level has been reached
- Count the simulated fraction $\widetilde{\gamma}_k$ that reaches level k
- Estimated collision risk = $\tilde{\gamma}_1 \times \tilde{\gamma}_2 \times \tilde{\gamma}_3 \times \ldots \times \tilde{\gamma}_m$

IPS convergence

Cerou, Del Moral, Legland and Lezaud (2002, 2005) have shown that the product of these fractions $\tilde{\gamma}_k$ forms an unbiased estimate of the probability of $\{s_t\}$ to hit the set D within the time period [0,T), i.e.

$$\mathbb{E}\left[\prod_{k=1}^{m} \tilde{\gamma}_{k}\right] = \prod_{k=1}^{m} \gamma_{k} = P(\tau < T)$$

In addition there is a bound on the L^1 estimation error, i.e.:

$$\mathbb{E}(\prod_{k=1}^{m} \tilde{\gamma}_{k} - \prod_{k=1}^{m} \gamma_{k}) \leq \frac{c_{p}}{\sqrt{N_{p}}}$$

Hybrid IPS versions

1. Importance switching (Krystul&Blom, 2005)

2. Rao-Blackwellization, using exact equations for { θ_t } and particles for Euclidian state (Krystul&Blom, 2006)

- Both handle rare mode switching well
- New large scale SHS scalability problem
 - Combinatorially many discrete modes

Rare-event probability estimation with application to air traffic

- Motivation
- Advanced air traffic example
- Interacting Particle System (IPS)
- Hierarchical Hybrid IPS
- Results for air traffic example
- Conclusions

Hierarchical Hybrid IPS (HHIPS)

✓ Define an aggregated mode process { κ_t }

$$\kappa_t = \kappa$$
 if $\theta_t \in \mathcal{M}_k$

with $\{M_k, \kappa \in \mathbb{K}\}$ a partition of M

- ✓ Apply Importance switching to { κ_t }
- ✓ Rao-Blackwellization, i.e. use exact equations for { κ_t } and particles for the other process elements { x_t , θ_t }

Hierarchical Hybrid IPS (HHIPS)

<u>Step 0</u> generates per aggregation mode value $\kappa \in \mathbb{K}$, N_p initial particles for k=0, and then starts the cycling through steps 1 through 3:

<u>Step 1</u> extrapolates each $(x_t, \theta_t, \kappa_t)$ -particle from $\tau_{k-1} \wedge T$ to $\tau_k \wedge T$

<u>Step 2</u> evaluates the $(x_{\tau_k}, \theta_{\tau_k}, \kappa_{\tau_k})$ particles that have arrived at Q_{ι}

<u>Step 3</u> resamples from the $(x_{\tau_{\iota}}, \theta_{\tau_{\iota}}, \kappa_{\tau_{\iota}})$ particles that have arrived at Q_k set k := k+1 and go to step 1

<u>Step 1</u> extrapolates each particle from $\tau_{k-1} \wedge T$ to $\tau_k \wedge T$ in time step of length h, using importance switching for the new κ - value and κ - conditional sampling of a new θ – value. For the latter use is made of the following theorem:

<u>Theorem 1</u> (κ - conditional θ - prediction)

Let τ be an arbitrary stopping time, then

$$p_{\theta_{\tau+h}|x_{\tau},\theta_{\tau},\kappa_{\tau+h}}(\eta \mid x,\theta,\kappa) = \frac{1_{\mathbb{M}_{\kappa}}(\eta) p_{\theta_{\tau+h}|x_{\tau},\theta_{\tau}}(\eta \mid x,\theta)}{\sum_{\eta' \in \mathbb{M}} 1_{\mathbb{M}_{\kappa}}(\eta') p_{\theta_{\tau+h}|x_{\tau},\theta_{\tau}}(\eta' \mid x,\theta)}$$

<u>Step 3</u> resamples from the particles that have arrived at Q_k In order to draw N_p samples per κ – value, use is made of the following hierarchical interaction theorem :

<u>Theorem 2</u> (Hierarchical interaction)

If $p_{\kappa_{\tau+h}}(\kappa) > 0$ for arbitrary stopping time τ , then

$$p_{x_{\tau},\theta_{\tau}|\kappa_{\tau+h}}(dx,\theta \mid \kappa) = \sum_{\eta \in \mathbb{M}_{\kappa}} p_{\theta_{\tau+h}|x_{\tau},\theta_{\tau}}(\eta \mid x,\theta) p_{x_{\tau},\theta_{\tau}}(dx,\theta) / p_{\kappa_{\tau+h}}(\kappa)$$

$$p_{\kappa_{\tau+h}}(\kappa) = \sum_{\theta \in \mathbb{M}} \int_{\mathbb{R}^n} \sum_{\eta \in \mathbb{M}_{\kappa}} p_{\theta_{\tau+h} | x_{\tau}, \theta_{\tau}}(\eta \mid x, \theta) p_{x_{\tau}, \theta_{\tau}}(dx, \theta)$$

Key extensions of HHIPS over IPS for SHS

- Embedding of an aggregation mode process;
- Particles are maintained per aggregation mode;
- Importance switching of aggregation mode is used for the conditional prediction of SHS particles;
- Hierarchical interaction is used for the resampling of particles that reached $Q_k \triangleq (0,T) \times D_k \times \mathbb{M}, \ k = 1, ..., m-1$.

Rare-event probability estimation with application to air traffic

- Motivation
- Advanced air traffic example
- Interacting Particle System (IPS)
- Hierarchical Hybrid IPS
- <u>Results for air traffic example</u>
- Conclusions

Scenarios

- Two aircraft encounter using HHIPS
- Eight aircraft encounter using IPS
- Random traffic high density using IPS

Air traffic safety related events

Event	MTC	STC	MSI	NMAC	MAC
Prediction time	8	2.5	0	0	0
(minutes)					
Horizontal distance	15	1 5	1 5	1 05	0.054
(Nm)	4.5	4.5	4.5	1.25	0.054
Vertical distance	000	000	000	500	101
(ft)	900	900	900	500	131

- MTC = Medium Term Conflict
- STC = Short Term Conflict
- MSI = Minimum Separation Infringement
- NMAC = Near Mid-Air Collision
- MAC = Mid-Air Collision

Sequence of conflict levels for air traffic

k	1	2	3	4	5	6	7	8
<i>D</i> _{<i>k</i>} (Nm)	4.5	4.5	4.5	4.5	2.5	1.25	0.5	0.054
h_k (ft)	900	900	900	900	900	500	250	131
Δ_k (min)	8	2.5	1.5	0	0	0	0	0
		Short Tern Conflict	n	Minimum Separation Conflict		Near Mid-Ai Collision (NMAC)	N	∱ /lid-Air Collisi
Ν	Aedium Terr Conflict	n						(

$ilde{\gamma}_k$ values estimated by HHIPS for Two-aircraft scenario

k	Run 1	Run 2	Run 3	Run 4	Run 5
1	1.000	1.000	1.000	0.991	1.000
2	5.77E-04	5.64E-06	6.24E-06	5.04E-06	6.13E-06
3	6.40E-03	7.25E-01	7.20E-01	6.84E-01	7.66E-01
4	0.566	0.569	0.596	0.540	0.608
5	0.344	0.256	0.223	0.401	0.198
6	0.420	0.452	0.402	0.459	0.429
7	0.801	0.845	0.929	0.710	0.949
8	0.814	0.827	0.841	0.828	0.802
Π	1.97E-07	1.89E-07	1.89E-07	2.00E-07	1.85E-07

IPS based estimation typically yields values 0.0 for $k \ge 4$

Reach probabilities estimated through 10 runs

Event	Mean	Std. dev.
MTC	1.0	4.8E-03
STC	2.35E-04	5.0E-04
MSI	2.57E-06	3.9E-07
NMAC	2.82E-07	4.5E-08
MAC	1.91E-07	1.6E-08

Contribution to reach probability

Global	DM-loop	Share
comm.		%
up	up	0.5
up	down	1.9
down	up	97.6
down	down	0.002

Two-aircraft encounter and dependable technical systems

Eight aircraft encounter using IPS

Level	1 st IPS	2 nd IPS	3 rd IPS	4 th IPS
1	1.000	1.000	1.000	1.000
2	0.528	0.529	0.539	0.533
3	0.426	0.429	0.424	0.431
4	0.033	0.036	0.035	0.037
5	0.175	0.180	0.183	0.181
6	0.267	0.158	0.177	0.144
7	0.150	0.268	0.281	0.427
8	0.000	0.009	0.233	0.043
Product of fractions	0.0	5.58 · 10 ⁻⁷	1.67 · 10 ⁻⁵	4.01 · 10 ⁻⁶

Two-aircraft vs. eight-aircraft encounter

Eight-aircraft encounter: Baseline PF response vs. Fast PF response

ATSI 40

Random traffic scenario, high density

- Eight aircraft per packed container
 - 3 times as dense above Frankfurt on 23rd July '99
 - IPS, 10,000 particles, 30 hours per IPS run

IPS runs for random traffic scenario

Level	1 st IPS	2 nd IPS	3 rd IPS	4 th IPS
1	0.922	0.917	0.929	0.926
2	0.567	0.551	0.560	0.559
3	0.665	0.666	0.674	0.676
4	0.319	0.331	0.323	0.321
5	0.370	0.367	0.371	0.379
6	0.181	0.158	0.162	0.171
7	0.130	0.209	0.174	0.145
8	0.067	0.005	0.094	0.066
Product of fractions	6.42 · 10 ⁻⁵	6.76 · 10 ⁻⁶	1.11 · 10 ⁻⁴	6.99 · 10⁻⁵

Rare-event probability estimation with application to air traffic

- Motivation
- Advanced air traffic example
- Interacting Particle System (IPS)
- Hierarchical Hybrid IPS
- Results for air traffic example
- <u>Conclusions</u>

Conclusions

- Thanks to IPS developments it has been shown that uncoordinated conflict resolution falls short in safely accommodating high en route traffic demand
- Follow-up work on risk assessment:
 - Continue developments of IPS and HHIPS
 - Extending Convergence Proof
 - Monte Carlo Markov Chain
 - Traffic complexity prediction
 - Evaluate advanced airborne self separation concept
 - Include ACAS in simulation model
 - Validation of assessed risk level

Validation of assessed risk level

- Simulation model ≠ Reality
- Identify the differences
- Assess each difference individually (and conditionally)
 use of statistical data and expert knowledge
- Assess model parameter sensitivities by Monte Carlo simulations
- Evaluate effect of each assumption at simulated risk level
 use of statistical data and expert knowledge
- Evaluate combined effects of all model assumptions
 - Typical output: expected risk and 95% area
- Improve simulation model for large differences

To be continued

http://iFly.nlr.nl

