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iFly, Work Package 3, D3.2

Report on timely prediction of complex conditions for

en-route aircraft

May 16, 2011

Abstract

This is Deliverable 3.2 describing the work performed under task 3.2 of work
package 3 of the iFly project. The objective of task 3.2 is to develop methods
for timely predicting potentially complex air traffic conditions that may be over-
demanding to airborne self separation. Starting from the analysis of the require-
ments on complexity metrics stemming from the autonomous aircraft advanced
concept of operations of the iFly project, novel methods for complexity evaluation
are proposed that could play an essential role within the strategic and hazards pre-
vention phases of the air traffic management operations. In particular, complexity
evaluation on a long term prediction horizon can help to identify congested areas
and support strategic flight plan optimization, whereas complexity evaluation on
a mid term horizon can help to identify encounter situations that are critical for
distributed conflict resolution operations.
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1 Introduction

1.1 Description of work package 3

The objective of work package 3 is to study and develop methods for predicting air
traffic conditions that may be over-demanding to the airborne self separation design.
This is a crucial task for avoiding encounters that appear safe from the individual
aircraft perspective, but are actually safety-critical from a global perspective. The
characterization of globally safety-critical encounters can provide useful information
for the trajectory management and conflict resolution operations, and can also help
in identifying the potential ground support needs within the Autonomous Aircraft
Advanced Concept of Operations (A3 ConOps) developed in work package 1 of the
iFly project.

Work package 3 is structured in the following two sub-work packages:

WP3.1: Comparative study of complexity metrics. In this sub-work package,
we have carried out a critical survey of different metrics proposed in the litera-
ture for complexity modelling and prediction in Air Traffic Management (ATM),
[58]. Most of the current complexity metrics address ground-based ATM. Though
this is reasonable within the current centralized ATM system, where aircraft fol-
low predefined routes according to some prescribed 4D flight plan, it becomes
restrictive within airborne self separation ATM systems.

WP3.2: Timely predicting complex conditions. In this sub-work package, we shall
study the problem of predicting complex conditions in airborne self separation
and developing a appropriate complexity metrics. For work package 3 studies,
no specific choice is made regarding where to use the novel methods, airborne
and/or on the ground.

1.2 Objectives and activities under the sub-work package 3.2

The goal of sub-work package 3.2 is to develop approaches to complexity evaluation
that can be applied to advanced autonomous aircraft ATM systems, where a part of the
responsibility in maintaining the appropriate separation between aircraft is delegated
to the pilots.
In particular, pilots will take over the air traffic controllers’ tasks for separation assur-
ance in Self Separating Airspace (SSA), and they will rely for this purpose on advanced
tools enabled by advanced technologies for sensing, communicating, and decision mak-
ing. Centralized control will assume a new role consisting in a higher level, possibly
automated, supervisory function as opposed to lower level human-based control, which
should allow an increase in the airspace capacity without compromising safety.

The development phase in WP3.2 is based on

• a preliminary analysis of possible applications of complexity evaluation in the A3
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ConOps developed in wok package 1 and described in Deliverable 1.3, [13], and

• the survey work in Deliverable 3.1, [58], on the approaches to complexity evalua-
tion that have been proposed within the current human-based centralized ATM
system and may be appropriate also for the foreseen automated airborne self
separation.

Work is structured into two parallel streams of activities, that is

i) the further development of a promising approach to intrinsic air traffic complexity
characterization described in Deliverable 3.1, with specific focus on computational
aspects

ii) the introduction of innovative approaches to complexity evaluation, better tai-
lored to the intended A3 ConOps applications.

The assessment phase in WP3.2 consists of evaluating the performance of the novel
complexity metrics when used for identifying those air traffic configurations that are
more difficult to control in a decentralized way. Experiments are performed on the
hypothetical Autonomous Mediterranean Free Flight (AMFF) air traffic scenario con-
sidered in [7] for collision risk estimation by the Interacting Particle System (IPS)
method.

1.3 Organization of Deliverable 3.2

Deliverable 3.2 is structured as follows. In Chapter 2, the requirements on complexity
metrics stemming from the A3 ConOps are specified based on the formalization of the
A3 ConOps in Deliverable 1.3, [13]. Chapter 3 describes the main complexity metrics
proposed in the literature and discusses their drawbacks based on the characteristics
that a complexity metric should possess to be applicable to airborne self separation.
Chapter 4 presents further developments of a metric proposed in the literature that
was first identified as possibly applicable to airborne self separation in Chapter 3.
Critical aspects that hamper its use for the intended A3 ConOps applications are
pointed out. Two novel methods for complexity evaluations are then presented in
Chapter 5. Their features are summarized and their performance is compared through
a correlation analysis with collision risk. Finally, Chapter 6 draw concluding remarks
on the achievements under WP3.2 and discusses possible further developments.
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2 Possible applications of complexity metrics within the

A3 ConOps

2.1 Introduction

The A3 ConOps described in Deliverable 1.3 of the iFly project, [13], addresses a quite
challenging approach to ATM, where a net-centric environment is envisaged in which
all aircraft are responsible for airborne self separation, without ground support from
Air Traffic Control (ATC), while meeting traffic flow constraints. The focus is on the
en-route part of the flight, with self separation capable aircraft flying in the SSA.

Trajectory-based operations are adopted to enhance the strategic ATM operations and
are allowed by the dynamical sharing of the Reference Business Trajectory (RBT) to
reduce uncertainty in the predicted aircraft position during its flight. The sharing of
RBT information is enabled by the System Wide Information Management (SWIM)
system, which incorporates ground infrastructure and air-ground data links network.
As a result, the ATM focus is shifted from tactical interventions to management of
RBTs which are then flown using the advanced functions of airborne systems. Never-
theless, the need for tactical ATM is still be present due to the stochastic nature of air
traffic environment and the occurrence of unforeseen events.

The responsibility for tactical ATM actions is delegated to aircrew supported by air-
borne systems (so called Airborne Separation Assistance Systems (ASASs)). This
allows more effective tactical maneuvering, since ATM actions will then be taken based
on a better knowledge of the local situation which would be available onboard of the
maneuvering aircraft. Nowadays, a commonly equipped aircraft with onboard sensors
has better information about local environment than the air traffic controllers. In
addition, the issue of getting reliable and complete information on the traffic surround-
ing the aircraft will be solved by progressive implementation of data link technologies,
such as Automatic Dependent Surveillance - Broadcast (ADS-B) or Traffic Information
Service - Broadcast (TIS-B), together with SWIM.

During the SSA part of the flight, which may consist of the whole phase between the
departure and destination Terminal Maneuvering Areas (TMAs), the self separation
capable aircraft can fly according to the Autonomous Flight Rules (AFR), i.e., they
are responsible for the ATM separation from other traffic and obstacles (e.g., weather
hazards or restricted areas).

An A3 equipped aircraft flying through the SSA has two main objectives:

• Performance, considering:

- Global ATM safety and effectiveness which is expressed in terms of various
strategic (flow) constraints.

- Own flight effectiveness reflected through different levels of trajectory and
maneuver optimization.
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• Own aircraft safety ensured by conflicts and hazards avoidance systems.

In high density airspace, the achievements of these objectives is hampered by the
presence of other aircraft flying in the SSA. More specifically,

• Performance is deteriorated when the aircraft is flying through an area with highly
congested traffic, since many tactical maneuvers are typically required;

• Safety might be compromised when an aircraft is involved in a safety-critical
encounter situation that exceeds the capabilities of the Conflict Resolution (CR)
system (automated and/or human-based).

In this context, complexity prediction and assessment play an essential role within the
strategic and tactical phases of the ATM processes. Measuring air traffic complex-
ity would serve the twofold purpose of avoiding the overload of tactical ATM (safety
aspects) and the need for excessive tactical maneuvering (performance aspects).

2.2 Intended applications

Within the A3 ConOps, two potential applications for the traffic complexity prediction
can be identified. These applications and the related requirements on complexity met-
rics are detailed in Sections 2.2.1 and 2.2.2. One is related to the strategic trajectory
planning. The other is oriented mainly to tactical actions and focused on onboard
separation management.

2.2.1 Trajectory management

The primary goal of A3 Trajectory Management (TM) is the effectiveness of the air-
craft flight within a long term time horizon of more than 30 minutes, potentially for the
whole autonomous part of the flight. Onboard TM considers the strategic flow manage-
ment constraints (in particular, the SSA exit conditions) and the areas-to-avoid (e.g.
restricted areas). In the A3 ConOps, areas-to-avoid include also complex or congested
regions.

Implementing onboard the complexity/congestion prediction system for TM would be
highly ineffective. As a matter of fact, while an aircraft can obtain very accurate
information on its local environment through onboard sensors and air-air data links,
the additional information needed for strategic planning can only be obtained from
the SWIM ground system, which would require a transmission of a huge amount of
data. In view of this consideration and also of the limited computational power avail-
able onboard, it is assumed that the complexity/congestion prediction functionality
involving computationally demanding tasks will be delegated to ground systems and
implemented in the form of a ground automation tool. More specifically, the actual
RBTs available via SWIM will be used to generate 4D (space cross time) complexity
maps for different (both distributed and centralized) tools.
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A schematic overview of potential applications to TM and the related communication
channels is shown in Figure 1. They include the following services:

• Areas with complexity higher than a predefined threshold are sent to aircraft and
used as additional information for onboard trajectory optimization.

• Complexity maps are used for a ground-based trajectory optimization (e.g., in
Flight Operating Centers) and the suggested trajectory changes are sent to air-
craft.

• Complexity maps are used for a ground-based centralized flow management and
the corresponding flow or trajectory constraints are sent to all involved aircraft.

As the information from the ground-based complexity prediction application may be
used by various users – such as different ASASs, aircrews, but potentially also by
ground-based ATM systems –, the related complexity metric should not focus on one
particular long term conflict resolution system.

Figure 1: Potential trajectory management applications and communication overview.

As for the onboard TM application, in particular, since ground-based complexity pre-
diction is based on the long term RBT that may undergo many changes, the resulting
areas-to-avoid should be considered more as indications to the aircraft crew, not as
a hard guidance for trajectory modifications. Operational validation of the concept
should provide information for an effective implementation of this service.

2.2.2 ASAS mid term conflict detection and resolution

The primary goal of the ASAS mid term Conflict Detection (CD) module is the detec-
tion of hazards based on the mid term (up to 10-15 minutes) trajectories constructed
from the intent messages provided by all aircraft. In addition to potential conflicts,
hazards include situations that could overload the ASAS CR module. The CD function
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thus performs also a complexity prediction within the mid term frame and eventually
issues an alert, even in absence of an aircraft conflict.

By integrating complexity evaluation within the CR module, the conflict solver could
favor those resolution maneuvers with lower complexity so as to avoid further alerting
and contribute to the reduction of the overall traffic complexity.

An important aspect of this application of complexity prediction is a tight relation with
the CR algorithm. Complexity should mainly reflect how difficult it is for CR algorithm
to solve a potential problem (in terms of number of possible solutions, complexity and
effectiveness of the proposed trajectory modifications, etc.).

The concept of preservation of manoeuvring flexibility, introduced by NASA in [42, 65]
and briefly revised in Deliverable 3.1 [58], represents one possible approach to this
problem.

2.3 Relevant features of a complexity metric

In general terms, air traffic complexity is a concept introduced to measure the difficulty
and effort required to safely manage air traffic. In the current ground-based ATM
system where the airspace is structured into sectors and a team of air traffic controllers
is in charge of guaranteeing safety in each sector, complexity is ultimately related to
the workload, i.e., the effort exerted by humans in managing air traffic. Complexity
measures are currently employed to redistribute and reassign human resources and to
reconfigure sectors in order to adapt the capacity of the ATM system to the air traffic
demand.

The structure and functioning of the A3 ConOps, as well as the envisaged airborne self
separation applications described in Section 2.2, pose novel requirements to complexity
metrics, which ultimately result in certain key features that the metrics should possess.
A list with a brief explanation of these features is reported next.

Accounting for traffic dynamics

Traffic density is the one most important factor determining the complexity of air
traffic, irrespectively of the specific application. It is probably the most often considered
factor and the term “congested area” is usually used to identify areas with a high traffic
density. However, traffic density alone conveys only a partial information on complexity.
This has been already acknowledged in the context of ground-based ATM, where it
has been noted that, in certain circumstances, controllers accept traffic beyond the
prescribed threshold, while in other cases they reject it despite the number of aircraft
being well below the threshold, [1]. The dynamics of the traffic plays a major role in
this. For example, the two patterns in Figure 2 involve the same number of aircraft at
the same initial positions, but the different dynamics lead to a coherent and organized
traffic flow in one case and to a chaotic situation in the other one. In the current ATM
perspective, an ordered traffic flow is generally considered a low complexity situation,
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regardless of the number of aircraft involved, whereas only a relatively low number
of aircraft is considered acceptable if the traffic pattern is chaotic. It is debatable,
however, that this is going to be an equally important feature in a self separation
context (see, e.g., the discussion in [8]). Nevertheless, it is clear that density on its own
is a crude estimator of complexity and traffic dynamics must also be accounted for.

Figure 2: Different air traffic situations with the same density.

Independence of the airspace structure

In the A3 ConOps, SSA is a sector-free context where aircraft are allowed to select their
preferential routes subject to some constraints. As such, complexity metrics should not
present any structural dependence on the sector characteristics. Given that the traffic
density is a relevant factor for complexity characterization, [27, 41], the identification
of aircraft clusters (i.e., groups of closely spaced aircraft) can complement and acceler-
ate complexity assessment by isolating those airspace areas where to concentrate the
attention.

Aircraft clustering was originally studied in connection with the conflict resolution
problem [12, 62, 26, 19, 6]. The work [12], in particular, studies conditions under which
separation assurance can be delegated to the cockpit, based on the idea of clusters
of conflicting aircraft. A methodology for identifying aircraft clusters is suggested
in [5, 4] as a first step towards obtaining a sector-independent evaluation of airspace
congestion: aircraft clusters are isolated first and then congestion is assessed based on
complexity evaluation in each cluster. In some sense, aircraft clusters can play within a
self separation context a role similar to sectors within the centralized human-operated
ATM system.

Tailoring to the look-ahead time horizon

The time dependence aspect should be better focused, introducing approaches for air
traffic complexity assessment tailored to the specific time horizon. As for the foreseen
applications in the A3 ConOps to onboard trajectory management and intent-based
conflict detection and resolution, we can distinguish between a long term and a mid
term look-ahead time horizon, respectively.
Complexity metrics for onboard trajectory management should be computed based on
the aircraft RBT over the reference (long term) time horizon for onboard trajectory
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optimization, which may extend to the whole duration of the autonomous part of the
flight. They should detect critical situations that would require many tactical manoeu-
vres to be solved along the RBT of each single aircraft, and identify highly congested
regions that would require an entering aircraft too many adjustments of its RBT to
pass them through. Complexity should be recomputed from time to time to take care
of possible modifications of the aircraft RBTs. Unexpected deviations on a finer time
scale shall be accounted for by complexity metrics tailored to a mid term time horizon.
Complexity metrics for supporting the intent-based conflict detection and resolution
functions should detect those situations that could overload the onboard conflict reso-
lution module. They should be computed based on the trajectories reconstructed from
the state and intent information on a mid term time horizon of 10− 15 minutes, pos-
sibly accounting for uncertainty in the aircraft trajectory prediction due, e.g., to the
wind prediction.

Independence of the control effort

A complexity metric can be classified as control-dependent or control-independent, based
on whether it accounts for the controller in place explicitly or only indirectly through
its effect on the air traffic. Complexity metrics incorporating air traffic controller’s
workload measurements are clearly control-dependent. In principle, control-dependent
metrics could be employed in an airborne self separation framework too, e.g., by incor-
porating some measure of the control effort involved for solving a conflict in terms of
deviation from the original trajectory, computational effort, etc. This approach, how-
ever, is not feasible in practice. Consider in fact that, in the A3 ConOps, control in the
SSA is delegated to the aircraft, with pilots supported in their trajectory and separation
management tasks by automated tools implementing certain optimization and conflict
resolution strategies. Different levels of automation could be realized: the pilot could
be provided with a set of possible options to choose from or only be informed of the
decision taken by some automated system, whose characteristics would depend on the
adopted optimization and resolution strategy. As a result, the A3 ConOps controller
has a decentralized time-varying structure, difficult to characterize for the purpose of
control effort evaluation, and involving pilots as human-in-the-loop component, with
the related problems of their workload evaluation. All this makes a control-independent
measure of complexity better suited for the A3 ConOps.

A possible way of taking into account the difficulty of managing the traffic without
explicitly referring to the controller in place would be to adopt the notion of flexibility
of the aircraft trajectory, i.e., the extent to which a trajectory can be modified without
causing a conflict with neighboring aircraft or entering a forbidden airspace area. In
principle, the larger is the flexibility of a trajectory, the easier is to find some resolu-
tion manoeuver to avoid the occurrence of a conflict due to some unexpected deviation
of a neighboring aircraft from its planned path, irrespectively of the specific control
strategy used to select the best resolution maneuver. The use of flexibility measures in
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an airborne self separation framework is the object of an ongoing research activity by
NASA, [34, 35, 33]. The concept of flexibility is used differently depending on the time
horizon. In the short/medium term, flexibility is used as a criterion to rate different
conflict resolution maneuvers, so that the adopted solution is the easiest to adapt to
unexpected behavior by intruder traffic. In the long term horizon, a flexibility preser-
vation function is adopted to plan the aircraft trajectory by minimizing its exposure
to disturbances such as weather cells and dense traffic areas.

These two notions tailored to different look-ahead time horizons appear well-suited for
the two applications to onboard trajectory management and intent-based conflict de-
tection and resolution, the only issue being related to the lack of an effective procedure
for their computation in a general 3D setting.

Goal-oriented output form

Air traffic complexity is both a time- and space-dependent feature, that is typically
expressed in aggregate form by condensing either the space or the time information (or
both) of the traffic situation under consideration. Output forms range from a scalar
value, describing the traffic complexity in a certain region at a specific time instant, to
a spatial complexity map.

Regarding the perspective applications, scalar-valued metrics (possibly projected over
some look-ahead time horizon) could be better suited to the mid term conflict detection
and resolution function, providing a synthetic information on the level of complexity
encountered by the aircraft along its current trajectory, which should be easier to
interpret. On the other hand, complexity maps can be used to identify critical areas
of the airspace that the aircraft should better avoid, and, hence, are more suitable for
the long term trajectory management task.

Sustainable computational load

The computational effort involved in complexity evaluation is a critical feature for ATM
operations, especially in on-board applications.

It is important to note that the effort is related to the output form: those approaches
providing a complexity map are typically computationally more intensive than those
computing a scalar value of complexity, and for the them the memory requirements
and the need for an efficient (compact and easy to interpret) representation of the
information are an issue. As the computational resources available on the ground are
higher than those available onboard, in the A3 ConOps, the complexity/congestion
prediction functionality for trajectory management will be implemented in the form of
a ground automation tool and only relevant information on the ares-to-avoid will be
uploaded to the airborne system.

A property that can reduce the computational load in trajectory management opera-
tions is that each aircraft contribution to complexity can be computed separately and
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then combined with that of the other aircraft to provide the overall air traffic complex-
ity. This property in fact allows a simple evaluation of the impact of possible trajectory
changes by removing the original contribution of the aircraft and replacing it with the
new one based on the updated trajectory.
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3 Analysis of the existing approaches to complexity eval-

uation in view of the A3 ConOps application

In this Chapter 2, we evaluate the suitability and portability of existing complexity
metrics to airborne self separation. A journal version of this chapter has been accepted
for publication, [59].

Most of the complexity measures that have been to some extent successful within the
current human-based centralized ATM system will actually turn out to be inappropriate
within the A3 ConOps, and this motivates our work on the development of novel metrics
to meet the new challenges posed by airborne self separation.

3.1 Main approaches proposed in the literature

Several metrics have been proposed in the literature for the characterization of air
traffic complexity. A description of selected metrics is provided next. This description
is taken from Deliverable 3.1, [58]. The reader can refer to the comprehensive literature
review [27] and the technical report [51] for more details on those complexity metrics
explicitly accounting for the air traffic controllers’ workload.

Aircraft density (AD)

In the current practice, complexity of air traffic is accounted for in terms of number
of aircraft and on a per-sector basis, [66, 27]. The number of aircraft in a sector
is the air traffic characteristic that has been most cited, studied, and evaluated in
terms of its influence on workload. In the United States, the peak aircraft count (the
largest number of aircraft in a sector during any minute of a 15 minutes time interval)
is compared with an acceptable peak traffic count value, and adopted for operational
traffic flow management decisions like re-routing flights out of an overloaded sector, [50].
Similarly, the European flow management staff determines the airspace configuration
schedule (successive aircraft configurations during the day) by splitting or merging
sectors based on the number of air traffic controllers on duty and the traffic load
assessed by means of flight counts and sector capacities. A decision support system
for traffic management (the Enhanced Traffic Management System) is used for this
purpose, whose monitor/alert function is based on a comparison of the prediction of
traffic volume in the sector against some established threshold volume representing the
maximum number of aircraft that the air traffic controllers are willing to accept in that
sector.

Dynamic density (DD)

Researchers unanimously agree that air traffic indicators other than the number of
aircraft per sector are relevant to the air traffic controller’s workload. These indicators
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are related to both structural and flow characteristics of air traffic, [51, 27]. The
former characteristics are fixed for a sector and given by spatial and physical attributes
such as terrain configuration, number of airways, airway crossings and navigation aids
(static air traffic characteristics). The latter vary as a function of time and depend on
features such as number of aircraft, weather, aircraft separation, closing rates, aircraft
speeds, mix of aircraft and flow restrictions (dynamic air traffic characteristics). These
static and dynamic factors interact in a nonlinear complex way to produce air traffic
complexity, [2, 48, 10]. A list of “complexity factors” is provided in the literature review
[27].

DD is an aggregate measure of complexity where traffic density and other dynamic
traffic characteristics are combined linearly or through a neural network, [36, 43, 66,
39, 28, 40, 49, 50]. The characteristics are identified as critical for realtime decision
making through interviews to qualified air traffic controllers and include such variables
as the number of aircraft undergoing trajectory changes or requiring close monitoring
due to reduced separation. The weights are determined based on subjective ratings
obtained showing different traffic scenarios to the interviewed air traffic controllers or
by regression analysis of their physical activity data. As a result, DD is a complexity
measure that incorporates subjective and objective workload measurements.

Different DD measures have been proposed in the literature, depending on the com-
plexity factors that they include. The choice of the complexity factors often relates to
the specific Air Traffic Control Center (ATCC), which makes DD a sector-dependent
metric. The structure of the airspace was actually identified as the second most im-
portant factor behind traffic volume [41]. Histon et al. [28, 29] investigated how this
structure can be used to support abstractions that air traffic controllers appear to use
to simplify traffic situations. A DD metric that includes a structural term based on
the relationship between aircraft headings and the dominant geometric axis in a sector
was proposed in [36]. Also, specific emphasis was given to the traffic and airspace
characteristics that impact the cognitive and physical demands placed on the air traffic
controller. The relation of DD with cognitive factors is investigated in [27].

Interval complexity (IC)

IC is a time-smoothed version of a DD-like measure that has been introduced in [24]
as an estimate of the air traffic controller’s workload in a sector.

The IC of a sector is defined as the average over a 5 to 10 minutes time window of the
linear combination of the following complexity factors: number of aircraft flying within
the sector, number of aircraft flying on nonlevel segments, and number of aircraft flying
close to the border of the sector. Nonlevel flights and flights close to the boundary in
fact require special attention and procedures to be followed by the air traffic controller.
The weights in the linear combination depend on the specific sector.
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Fractal dimension (FD)

FD is an aggregate metric for measuring the geometrical complexity of a traffic pattern,
by evaluating the number of degrees of freedom used in the airspace by the existing
air routes, [52]. This information is independent of sectorization and does not scale
with traffic volume. Currently, aircraft cruise on linear routes at specified altitudes,
corresponding to a geometrical dimension of 1. In the future, it is expected that flights
will be allowed to move from these linear routes. If all of the airspace were covered by
routes, the FD would be 3. However, there will still be preferred routes (due to the
position of connected airports, or to wind currents, etc.), thereby decreasing the actual
dimension of the route structure. Analysis of air traffic using a gas dynamics analogy
also shows a relation between FD and the conflict rate (number of conflicts per hour
for a given aircraft).

Input-output (IO) approach

In [45, 46, 47], air traffic complexity is defined in terms of the control effort needed
to avoid the occurrence of conflicts when an additional aircraft enters the traffic. To
this purpose the authors introduce an input-output system, where the air traffic within
the region of the airspace under consideration is the system to be controlled, and
an automatic conflict solver is the feedback controller. The input to the closed-loop
system is represented by a (fictitious) additional aircraft entering the traffic, whereas
the output is given by the deviation of the aircraft already present in the traffic from
their original flight plans as issued by the feedback controller to safely accommodate the
incoming aircraft. Optimization of the conflict resolution maneuvers is performed by
means of a mixed integer programming (MIP) solver. The overall amount of corrective
action needed to recover a conflict-free condition is taken as a measure of the air
traffic complexity. A “complexity map” is constructed as a function of the entering
position and bearing of the incoming aircraft. A scalar value can be extracted from this
complexity map taking, e.g., the “worst-case” value for the corrective action needed to
safely accommodate the additional aircraft. Note that different measures of the control
effort and different solvers could be used, and that the choice of the conflict solver has
a large impact on complexity evaluation.

Intrinsic complexity metrics

Some researchers were not so inclined to acknowledge a direct cause-effect relation
between complexity and workload, and also that the relationship between the two could
be adequately expressed mathematically. This has led to a radically different view of
the complexity issue, which aims at building metrics of the “intrinsic” complexity of
the air traffic distribution in the airspace, without incorporating any measure of the
air traffic controller’s workload, [15]. According to this viewpoint, complexity metrics
should capture the level of disorder as well the organization structure of the air traffic
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distribution, irrespectively of its effect on the air traffic controller’s workload.

Two classes of intrinsic complexity metrics are presented in [15], both based on the
measurements of the aircraft velocities and positions. The first class consists in a geo-
metrical approach where complexity is a function of the relative position vectors and
relative velocity vectors of the aircraft. The second class describes traffic flow organi-
zation using the topological Kolmogorov entropy of a dynamical system modelling air
traffic. The approach based on topological entropy was further developed in later work,
[14, 19, 17], where the authors explore both linear and nonlinear system modelling of air
traffic to derive topological entropy measures for air traffic complexity characterization,
and, ultimately, to produce maps of local complexity to be used for the identification
of critical air traffic areas.

Inspired by this work, in [37] the air traffic is represented through an interpolating
velocity vector field, and complexity is evaluated based on the characteristics of the
latter. Essentially, if the vector field is smooth, aircraft can follow non intersecting
trajectories and the introduction of an additional aircraft causes a marginal increase
in complexity. On the other hand, locations of the airspace where the vector field
loses continuity correspond to critical areas. The main challenge of the approach is
computing the separation boundary (between smooth field regions) in real-time.

In [63], to capture the complexity associated to a lack of organization, an air traffic
situation is modelled by an evolution equation, with the aircraft trajectories interpreted
as integral lines of some dynamical system. The Lyapunov exponents (LEs) of the
dynamical system provide an indicator of the air traffic complexity, allowing for the
identification of different organizational structures of the aircraft speed vectors such as
translation, rotation, divergence, convergence, or a mix of them. For systems described
by nonlinear differential equations, LEs measure the rate of exponential convergence
or divergence of nearby trajectories, and can be taken as indicators of the level of
order/disorder of a system. The idea is that the larger is a positive Lyapunov exponent,
the higher is the rate at which one loses the ability to predict the system behavior.
Areas characterized by high air traffic complexity are then easily identified by plotting
the largest Lyapunov exponent as a function of the airspace position, thus obtaining a
complexity map over the considered airspace area.

3.2 Classification of the reviewed complexity metrics

In this section we classify the approaches reviewed in Section 3.1 with respect to the fea-
tures that are relevant to airborne self separation described in Section 2.3. A schematic
view of this classification is reported in Table 1.

As for the “computational load” feature, only a qualitative classification of the ap-
proaches is presented. A comparison of the different approaches in terms of compu-
tational effort is quite a challenging task. Indeed, different implementations of the
same approach may result in a different assessment of the computational load. Also,
the comparison is fair only when made between approaches providing the same output
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form (a scalar value rather than a map).

As discussed before, those complexity metrics where workload and air traffic measure-
ments are incorporated within a single aggregate indicator are control-dependent. Also,
they depend on the adopted notion and measure of workload, and inherently incorpo-
rate various human factors aspects. Workload-oriented metrics are sector-based (in
[24], reference is even directly made to complexity of a sector as an estimate of the
air traffic controllers’ workload of that sector), and often show structural dependence
on the sector characteristics, which further limits their applicability to a sector-free
context such as the A3 ConOps.

AD is both a workload-dependent and sector-based metric, since it is given by the
number of aircraft in a sector, which is compared with a threshold determined based
on the capabilities of air traffic controllers to safely handle air traffic in that sector.
Even within a ground-based ATM context, AD presents some drawbacks since it does
not not take into account a few aspects that may greatly influence the actual workload
levels experienced by air traffic controllers. This includes factors such as traffic pattern,
traffic mix, weather, etc., the time variability of the traffic volume (a traffic volume
that highly fluctuates over time is more likely to generate conflicts and appears more
complex to the controller than a uniform traffic flow, [23]), and the duration of a high
workload period. In turn, AD is very sensitive to the entry and exit times of a few
flights which would actually not change the amount of sustained workload. Finally,
human factors are also neglected, although operational errors are more likely to occur
after rather than during a peak in traffic count [64].
Despite all these drawbacks, AD is currently considered the best available indicator
of complexity in view of the simplicity of its calculation, which does not require other
information than aircraft count, and of its operational interpretation, since to reduce
complexity one should just limit the number of aircraft entering the sector.

The DD and IC metrics are also workload-oriented and sector-based, and are even more
critically dependent on the workload evaluation method and the sector characteristics.
They are in fact parametric models where different complexity factors in a sector are
combined linearly or through a neural network with coefficients finely tuned based
on a quantitative evaluation of the perceived workload in that specific sector. The
computed weights are extremely variable from sector to sector and therefore need to
be re-estimated and re-validated for each sector (and possibly periodically re-tuned).
Once the weights have been set, evaluating the DD is not a computationally demanding
task. From an operational viewpoint, having too many complexity factors to analyze
makes it difficult for decision makers to understand which specific complexity factor is
responsible for a high-workload situation and, hence, to decide what action to take to
reduce complexity, [50].

The IO approach provides another control-dependent measure of complexity, which
is evaluated in terms of the control effort needed to safely accommodate a fictitious
additional aircraft, but avoids the workload issue by using a specific centralized conflict
solver in place of the air traffic controller. A similar approach could actually be adopted
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for tuning the coefficients in the DD and IC aggregate complexity metrics, replacing the
air traffic controller with some conflict solver. As for the computational effort involved
in the IO map computation, it depends on the adopted conflict solver. Some gridding
procedure has to be adopted to build the map.

Note that all the DD, IC, and IO control-dependent metrics could, in principle, be
adapted to airborne self separation, by substituting the evaluation of the control effort
with that of the trajectory flexibility, as suggested in Section 2.3 when discussing the
“independence of the control effort” feature.

The control-independent FD and LE metrics appear to be more directly applicable
to the A3 ConOps. In fact, since they depend only on the air traffic characteristics,
they can be used to evaluate both uncontrolled and controlled aircraft trajectories,
and in the latter case they do not require the knowledge of the controller in place,
which is accounted for only indirectly, through the effect of its action on the air traffic
organization.

Regarding the time dependence aspect, those measures that are computed based on
the aircraft future trajectories (such as FD, IO, and LE) are naturally evaluating com-
plexity over some look-ahead time horizon. As for FD, in particular, it can be thought
as a geometrical feature of a limit shape obtained by observing trajectories on an infi-
nite time period. As such it is a complexity metric potentially suitable for long term
applications. Unfortunately, it has a great drawback that limits its operational impact,
in that the timing information of the aircraft routes is completely lost in this type of
analysis. It was in fact originally proposed as a measure to compare traffic configura-
tions resulting from various operational concepts, [52], with the key feature of allowing
to decouple the complexity due to airspace partitioning in sectors from the complexity
due to traffic flow features, and of being independent of workload aspects.

Those measures that are computed based on the air traffic state rather than the whole
aircraft trajectories can be used to predict complexity in the future when combined with
trajectory prediction (by projecting the air traffic state and recomputing the complexity
measure). In [66], it is in fact suggested that DD can be projected over a suitable time
horizon by using trajectory prediction tools, so as to forecast future workload levels
and use this information for traffic management purposes. Good prediction accuracy is
reported in the 5 minutes scale, suitable for short term control applications. Extension
of the prediction horizon to 20 minutes could be of use for mid term control applications.
The projection of the IC metric on a further extended time scale of 20 to 90 minutes
could be used for selecting appropriate “complexity resolution” actions minimizing and
balancing traffic complexities between adjacent sectors of a certain airspace region.
Note that the reliability of the complexity prediction on some look-ahead time horizon
depends anyway on that of the aircraft trajectories prediction. Surprisingly, to our
knowledge, uncertainty in the trajectory prediction is not accounted for in any of the
(deterministic) approaches presented in the literature.

Regarding the output form, AD, DD, IC, and FD are all scalar metrics, but only AD,
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DD, and IC are extendable in time through aircraft trajectories prediction. The output
of the IO method is a map of the control effort as a function of the initial conditions
of an hypothetical additional aircraft entering the considered airspace region. As such,
this map provides only indirect information on the spatial distribution of complexity
in the airspace, which hampers its use for the identification of complex areas-to-avoid.
On the other hand, the spatial complexity maps derived based on LEs could support
decision making in the trajectory management function by isolating critical areas.

LE presents the drawback of being computationally demanding. More specifically, the
main challenge from a computational viewpoint is represented by the calculation of the
vector field that smoothly interpolates a given set of aircraft positions and velocities.

3.3 Concluding remarks

In this chapter, requirements posed by the A3 ConOps applications on complexity met-
rics have been discussed, and existing metrics have been critically revised, discussing
their portability and adaptability to the new airborne self separation context. In partic-
ular, the elusive notion of control effort, that is generally incorporated in the complexity
measure, has been found to be one of the main obstacles towards a definition of reliable
complexity indicators. The only metrics that appear portable to the A3 context are
the so-called “intrinsic metrics” and, in particular, the one based on the Lyapunov
exponents of the dynamical system that describes the air traffic evolution. Compu-
tationally more effective procedures to determine the dynamical system matching the
air traffic should be conceived to make it applicable within the A3 ConOps. This has
been part of the work performed in WP3 and is documented in Chapter 4. Further
novel approaches have been developed in parallel to meet the challenges posed by the
A3 applications. These approaches are described and analyzed in Chapter 5.
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4 The Lyapunov exponents based method for complexity

evaluation

In this chapter, we describe in some detail the approach to complexity evaluation based
on Lyapunov exponents developed in [16, 17, 19]. This approach has been identified
in Chapter 3 as the more promising for application to the A3 ConOps among the
approaches proposed in the literature. One of its key features is that complexity is
evaluated without making reference to the way the traffic is controlled (that is human
controller, full automated control or some hybrid approach) but considering the trajec-
tories of aircraft as observations of an underlying hypothetical flow whose geometrical
properties define complexity. Our goal in this chapter is to shed light on the compu-
tational challenges of complexity computation and describe possible ways to speed up
the approach. We also clarify at the end of the chapter which are the limits of the
approach with respect to the envisaged A3 ConOps applications.

4.1 Some basic complexity indicators

The first intrinsic indicator of complexity that can be considered is a simple extension
of the number of aircraft in a sector, but designed so that no reference is made to the
airspace structure. It is in some sense a local density indicator. Let w : R → R+ be
a smooth rapidly decreasing function and let (xj)j=1...N be a traffic sample with xi

corresponding to position of aircraft i. The local density around a point x ∈ R3 will
be defined as:

D(x) =
N∑

j=1

w(‖x− xj‖).

One can compute the integral of D over the entire space to obtain an aggregate value
for the density:

I =
∫

R3

D(x)dx =
N∑

j=1

∫

R3

w(‖x− xj‖)dx = N

∫

R3

w(‖x‖)dx.

If the integral of the window function w over the entire space is 1, then the integral of
the local density is simply the number of aircraft. It has to be noted that the definition
of local density is in some sense isotropic: D(x) is a sum of radial basis function (i.e.,
functions depending only on a norm). Some freedom remains in the choice of the norm,
that allow to take into account for example the difference between vertical and lateral
separations for aircraft. The local density has minimum possible value 0 (this can occur
with compactly supported w and points far away all aircraft). The maximum value of
D(x) is of course dependent on the shape of the window function; however, it is classical
to take w(0) = 1 and let the value decrease to 0 as the argument is going to +∞. In
this case, the value of D tend to N when all aircraft are located near a single point.
Most of the time, local density is computed on a regular grid, that is used to produce a
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complexity map of the traffic. This can be very time consuming for large airspaces since
except for the case of compactly supported w, the algorithmic complexity for evaluating
the local density at a point is of order O(N) with N the number of aircraft. A simple
trick allows a very fast computation in the case of evaluation on the points scattered on
a regular grid. First, let w be a window function (for the sake of simplicity, it is assumed
smooth and rapidly decreasing, but this is not mandatory) and let W : x 7→ w(‖x‖) the
associated radial basis function. The Fourier transform Ŵ of W is:

Ŵ (ξ) =
∫

R3

w(‖x‖)e−i〈x,ξ〉dx.

By a polar change of coordinates we have:

Ŵ (ξ) =
∫

R+

∫

S2

r2w(r)e−ir〈σ,ξ〉dσdr

with S2 the unit sphere in R3, dσ the solid angle measure on it. Since dσ is a rotation
invariant measure, it is possible to take ξ as defining the polar axis of S2, yielding:

Ŵ (ξ) =
∫

R+

∫

[0,2π]

∫

[−π
2
, π
2
]
w(r)r2e−ir‖ξ‖ sin φ cosφdφ dθ dr.

Since there is no dependance in θ, the integral reduces to the simple form:

Ŵ (ξ) = 4π
∫

R+

r
sin(r‖ξ‖)
‖ξ‖ w(r)dr

proving that Ŵ is again a radial basis function. The Fourier transform of D computes
as:

D̂(ξ) = Ŵ (‖ξ‖)
N∑

j=1

e−i〈xj ,ξ〉.

At a first sight, it seems that noting has been gained by switching to Fourier transform
except that the summation is now a little bit easier since it involves only trigonometric
functions that evaluate quickly on most modern computing architectures. Nevertheless,
it exists a fast algorithm for computing sums like:

N∑

j=1

e−i〈xj ,ξ〉

for ξ scattered on a regular grid: the Lomb periodogram. First of all, we have:

e−i〈xj ,ξ〉 = exp(−ix1jξ1)exp(−ix2jξ2)exp(−ix3jξ3) (1)

with xj = (x1j , x2j , x2j) and ξ = (ξ1, ξ2, ξ3). The trigonometric function being smooth,
it is possible to find a local approximation of the one dimensional terms involved in (1)
by a sum of terms computed on a regular grid of size P with step h:

exp(−ix1jξ1) =
mj∑

k=lj

αk,jexp(−itkξ1).
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The points tk are assumed to be evenly spaced (see Figure (3)) while the αk are inter-
polating weights (many different kind of interpolation formulas can be used to obtain
them: polynomial interpolation is very common).

�
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�
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���

�

Figure 3: Local interpolation

The computation of a 1-dimensional sum:

N∑

j=1

exp(−ix1jξ1)

can be expressed using only values on a regular grid as:

P∑

k=1

exp(−itkξ1)qk (2)

with:

qk =
N∑

j=1

αk,j

(the interpolation weights are assumed to be 0 outside the interval [lj ,mj ]). Looking
at (2), it appears to be a discrete Fourier transform of the sequence (qk)k=1...P . If we
seek at computing the Fourier transform at regularly spaced ξ1, this thus can be done
very efficiently by a Fast Fourier Transform (FFT) algorithm. Furthermore, since the
complete 3-dimensional sum is a sum of 1-dimensional factors, the overall algorithm
complexity has the same order as the FFT alone, that is O(N log2 N). To conclude
on the algorithmic complexity, it is enough to note that the number of terms in the
interpolation formula depends only on the step of the grid. The previous algorithm
can be applied to any evaluation of sums of radial basis functions on a regular grid.

Local density is an intrinsic complexity metric. However, it is a purely geometrical
indicator and is not related to temporal evolution of the traffic. As such it is a crude
estimator of the complexity: it is only a simple extension of the operational congestion
indicator. The organisation of the traffic is not taken into account. In many cases,
it is very important to distinguish between situations depending on the future and a
temporal extension has to be considered.

Some extensions of local density to take velocities into account have been designed
([16]), and allow to refine somehow the local density. Some of these estimators will not
fall within the scope of applicability of the fast algorithm, thus limiting their usefulness
to small airspaces.
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Assuming that the trajectory of aircraft i is given by the mapping βi : [a, b] → R3, the
local density as a function of time is:

D(x, t) =
N∑

i=1

W (‖x− βi(t)‖)

Given an x, the time derivative is thus:

∂D

∂t
(x, t) =

N∑

i=1

〈 ˙βi(t), βi(t)− x〉
‖x− βi(t)‖ W ′(‖x− βi(t)‖)

It can be recognized that the previous expression has the form of the so-called optical
flow equation. This induces in representing the traffic as the flow of a vector field, thus
interpolating between sample points. A very basic way of doing that is by assuming
that the interpolating vector field is linear. It is very easy to find, by standard linear
least squares, a matrix A and a vector v such that the velocity field is given by X(x, t) =
Ax + v and that best interpolates the observations, that is X is such that:

N∑

i=1

‖vi −Axi − v‖2

is minimum (we recall that vi is the observed velocity at sample point xi). In order to
obtain a meaningful picture of the complexity, such a linear model can be used only
by considering aircraft close to a given point. The local behavior of the traffic can be
recovered using the eigenvalues of the matrix A. A summary is given in Figure 4.

Real negative eigenvalues Real positive eigenvalues

Unit modulus eigenvalues Saddle point

Figure 4: Geometrical view of Lyapunov exponents

4.2 A local picture of evolution: the Lyapunov exponents

The generalization of local behavior for linear system can be done by introducing
Lyapunov exponents that can be interpreted as shear factors. As before, we assume
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that a velocity field X is defined on a domain S. Given an initial position x0 at time
t = 0, we defined the flow β(t, x0) as the solution of the equation:

d

dt
β(t, x0) = X(β(t, x0))

with condition β(0, x0) = x0. If now t 7→ β(t, x0) + ε(t) is a nearby trajectory, the
variational equation for flow gives an order one approximation for ε as the solution of:

d

dt
ε(t) = X ′(β(t, x0))ε(t)

so that the perturbation ε obeys (approximately) a linear but time dependent equation.
Given an initial ε(0) = v, the forward Lyapunov exponent at x0 and direction v is:

λ+(v) = lim sup
t→+∞

1
t

log ‖ε(t)‖

Intuitively, Lyapunov exponents will find a “mean” exponential behavior for perturba-
tion around a nominal trajectory: when the exponents are positive (resp. negative),
nearby trajectories tend to diverge (resp. converge) exponentially fast.

It seems at first sight that one can obtain as many different exponents as initial direc-
tion: it turns out that in fact only a finite number of these exponents can be generated
by varying v. To see that, note that since the equation satisfied by ε is linear, any linear
combination of two solutions is again a solution. Thus we have for any real number α:

λ+(αv) = λ+(v)

and, for any two initial conditions u, v:

λ+(u + v) ≤ max(λ+(u), λ+(v))

(this last equation is obtained from the fact that if ε1, ε2 are solution of the dif-
ferential equation with respective initial conditions u, v, then ε1 + ε2 is the solu-
tion with initial condition u + v and the proposition follows from ‖ε1(t) + ε2(t)‖ ≤
2 max(‖ε1(t)‖, ‖ε2(t)‖)). In fact we have more: since u = u + v − v:

λ+(u) ≤ max(λ+(u + v), λ+(v))

Assuming that λ+(v) < λ+(u) then it comes:

λ+(u + v) ≥ max(λ+(u), λ+(v))

Since u, v play symmetric roles:

λ+(u + v) = max(λ+(u), λ+(v))

This important result implies in turn that if for two non zero u, v, λ+(u) 6= λ+(v) then
u, v are linearly independent. Take for example λ+(u) < λ+(v) and α1u + α2v = 0.
Applying the previous results yields:

λ+(α1u + α2v) = −∞
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= max(λ+(u), λ+(v))

which is not possible for non zero u, v unless α1 = α2 = 0. As a consequence, it is not
possible in a n-dimensional space to find more than n different Lyapunov exponents.

The definition given above for Lyapunov exponents is interesting mainly for theoretical
derivations and to get a picture of what is going on. For practical computation of
Lyapunov exponents, the fact that we need a lim sup is not ideally suited. Fortunately,
it is possible in many cases to obtain an equivalent but much more tractable formula.

Lemma 1 Let:
d

dt
v(t) = A(t)v(t)

be a linear differential equation. It exists a smooth mapping t → Q(t) with values in
the unitary matrices such that:

d

dt
Q−1(t)v(t) = T (t)Q−1(t)v(t)

with T (t) an upper triangular matrix.

Because it has some interest for our purpose, we will give an outline of the proof of the
lemma. First, take e1, . . . en a basis and construct the solutions e1(t), . . . en(t) of the
differential equation with respective initial conditions e1, . . . en. Let E(t) be the matrix
with columns e1(t), . . . en(t) (E(t) describes how the original basis is deformed by the
flow). E(t) admits a (smooth) decomposition E(t) = Q(t)R(t) with Q(t) unitary and
R(t) upper triangular with positive diagonal elements. It is clear from the definition
that:

d

dt
E = AE

so that:
AE =

dQ

dt
R + Q

dR

dt

using the fact that Q is unitary and R is invertible:

T = tQAQ− tQ
dQ

dt
=

dR

dt
R−1

proving that T is upper triangular as a product of two upper triangular matrices. Now,
by the change of variable y(t) = Q−1(t)v(t), we obtain the equation:

d

dt
y = (tQAQ− tQ

dQ

dt
)y = Ty

which proves the lemma. In the previous representation, the diagonal elements of the
matrix R are positive. It is thus possible to write this matrix as:




eµ1 r12 . . . r1n

0 eµ2 . . . r2n

0 . . . 0 eµn
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The matrix T involved in the lemma is equal to dR
dt R−1 and can be written as:




dµ1

dt . . . . . . . . .

0 dµ2

dt . . . . . .

0 . . . 0 dµn

dt




A very interesting property is that the limit:

lim
t→+∞

µi

t

is precisely a Lyapunov exponent (and for almost all initial conditions, the sequence
of Lyapunov exponents obtained by considering diagonal entries of R is in increasing
order). Since we are dealing with true limits and not with lim sup, this formula gives
a procedure for computing Lyapunov exponents. Nearly all know algorithms used for
finding the Lyapunov exponents (or only the k largest) rely on the previous decompo-
sition. Another interesting point is that the sum of the Lyapunov exponents (that is
the trace of the matrix R) gives the speed of variation of the volume of an elementary
parallelepipede along the flow.

Recalling that Lyapunov exponents describe the local behavior of a system, taking into
account the temporal evolution, they constitute a generalization of our first geometrical
indicators. For the purpose of finding an intrinsic indicator of the complexity of the
traffic, Lyapunov exponents are very good candidates. As we will see later, their major
drawback is the computational load required for their evaluation.

4.3 Lyapunov exponents computation

Regardless of the method used to obtain the interpolating velocity field (local linear
models or dynamic splines), there is a number of numerical pitfalls when trying to
compute Lyapunov exponents. As mentioned before, the method of choice is to find
a QR decomposition of the matrix A obtained by transporting a basis (e1, . . . , en)
through the flow, then relate Lyapunov exponents to diagonal entries of the matrix.
It is very inefficient to estimate A and to factor it as QR time step by time step: a
differential equation satisfied by Q and R is solved instead, thus producing in a single
step an updated factorization. Based on the equation established before, if X ′(β(t)))
is the derivative of the field at time t along the trajectory β:

tQ
Q

dt
+

dR

dt
R−1 = tQX ′(β(t))Q

to simplify the notations, we put:

S(t) = tQX ′(β(t))Q

Since tQQ = Id:
dtQ

dt
Q = −tQ

Q

dt
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this matrix is skew-symmetric: its diagonal entries must be 0. When considering the
equation of evolution for these entries only, we obtain that:

λ′i(t) = Sii(t)

with λi(t) the i-th diagonal term of R. A simple ordinary differential equation solver can
be used to find λi(t) given Sii(t). At the same time, since dR

dt R−1 us upper triangular,
all the elements of D = tQQ

dt located below the main diagonal can be identified:

∀i < j, Dij = Sij(t)

Because D is skew-symmetric, all the elements of D are known. Again, a standard
differential equation allows to compute Q(t) as the solution of:

Q

dt
= QD

Note that only the diagonal elements of R are useful to compute Lyapunov exponents:
the remaining terms can be left unevaluated. The main concern with the algorithm
given above is that Q may (and indeed will) fail to be orthogonal during the time
evolution. Since this property is required, any algorithm computing Lyapunov expo-
nents has to correct Q from time to time. An interesting alternative approach has been
presented in [38]: instead of periodically orthogonalizing Q, a representation is chosen
so that orthogonality of Q is guaranteed. It is well known that any rotation matrix in
dimension n can be obtained as a product of n(n− 1)/2 elementary Givens’ rotations
with angles θij , i = 1 . . . n, i < j. The parametrization of Q is obtained precisely by the
θij . The details can be found in the original article. It has to been noted however that
the method is interesting mainly in low dimension, which is our case (n = 3). This
algorithm has been successfully implemented in our application.

4.4 Interpolating vector fields

4.4.1 Vector splines

As previously stated, the first step for obtaining traffic complexity is to generate a con-
tinuous (and smooth enough) vector field interpolating the observed aircraft velocities.
Formally, this problem can be described as finding a mapping X : R × R3 → R3 such
that, given observations (ti, xi, vi)i=1...N with xi, vi the position and velocity at time ti
for the sample i, we have:

X(ti, xi) = vi, i = 1 . . . N (3)

Unfortunately, this problem is ill-posed since infinitely many vector fields X can solve
it, even if high smoothness conditions are added. To obtain a tractable criterion, it
is needed to add a minimality requirement based on an energy like functional. More

30



specifically, given a differential operator L, we want to find a X that realizes the
minimum of:

E(X) =
∫

R

∫

R3

‖LX(t, x)‖2dxdt

under the interpolation constraints (3). This is the standard framework of vector L-
splines ([3]) when the vector field X is assumed not to depend on time (the time integral
in the energy functional is dropped). With some technical assumptions on X, one can
show that the optimal X can be written as:

X : x 7→
N∑

i=1

λt
iG(x, xi) + Q(x)

where λi is a vector coefficient in R3, G is the Green’s function associated with the
differential operator LtL and Q is an element of the null-space of LtL. The vector
coefficients λi can be identified using the interpolation condition:

N∑

j=1

λt
jG(xi, xj) + Q(xi) = vi, ∀i = 1 . . . N. (4)

Most of the time, Q is a polynomial and can be expressed as a sum:

d1∑

k1=1

d2∑

k2=1

d3∑

k3=1

ak1,k2,k3x
k1
1 xk2

2 xk3
3

where x1, x2, x3 are the components of the vector x. Putting this in (4), we obtain a
linear system in λi, ak1,k2,k3 :

∀i = 1 . . . N,
N∑

j=1

λt
jG(xi, xj) +

d1∑

k1=1

d2∑

k2=1

d3∑

k3=1

ak1,k2,k3x
k1
i,1x

k2
i,2x

k3
i,3 = vi

This linear system can be solved with classical algorithms, but is it faster in most cases
to use a Krylov solver as described below. Furthermore, Krylov solvers can avoid the
explicit construction of the matrix based on the G(xi, xj), which helps reducing the
computer memory needed.

Krylov solvers. To find the vectors λi occurring in the expression of the optimal
interpolating velocity field, a linear problem has to be solved as indicated in the previous
section. For small airspaces, the number of observations is typically in the order of some
hundreds, allowing to solve for the λi by using standard linear algebra algorithms, either
based on normal equations or QR decomposition (preferred in our case since some traffic
situations may induce rank degeneracies in the design matrix). However, when the size
of the data set is increased above one thousand, the computational burden is generally
too high (on a standard PC, one can expect computation times in excess of 1 hour). To
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address this specific issue, it is necessary to switch to an iterative approximate algorithm
for which the complexity scales only in the square of the number of observations instead
of the cube. The Green’s function used in field expansion is a diagonal one so that a
set of 3 independent scalar least square problems has to be solved instead of a vector
one. In the following, we will thus assume that we want to solve:

min
N∑

i=1

‖ai −
N∑

j=1

λj p̃(xi − xj , ti − tj)‖2

with (λj)j=1...N real coefficients. The most basic iterative algorithm for finding the λj

starts with an initial guess (λj(0))j=1...N and evolve according to a fixed step gradient
rule:

λk(n + 1) = λk(n)− µ
∑

i=1

(p̃(xi − xk, ti − tk), ei)

with:

ei = ai −
N∑

j=1

λj p̃(xi − xj , ti − tj)

Introducing the design matrix:

Lij = p̃(xi − xj , ti − tj)

and the vectors a = (a1, . . . , aN ) and λ = (λ1, . . . , λN ), the iteration can be written
more compactly as:

λ(n + 1) = λ(n)− µLtr(n)

with:
r(n) = a− Lλ(n)

For a sufficiently small µ, the algorithm will converge, but only at a linear rate. To
increase the speed of convergence, several techniques can be applied. Krylov subspace
methods have been widely used in such cases and exhibit very good behavior. Starting
from the gradient iteration, we see that for a given n, λ(n) is an element of the subspace
spanned by the vector λ0 and the vectors:

tLr(0),

(tLL)tLr(0),

. . . ,

(tLL)n−1tLr(0))

The subspace generated by the iterates:

(tLL)itLr(0), i = 1 . . . n− 1

is the Krylov subspace:
Kn(tLL, tLr(0))
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The key point in Krylov subspace methods is to use this property to generate λ(n) not
by the gradient but instead by finding the vector in:

λ0 + Kn(tLL, tLr(0))

that minimize the least square criterion. This can be done easily by iteratively find an
orthonormal basis of:

Kn(tLL, tLr(0))

and project the residual r(n − 1) on it. As is, the algorithm performs very well on
our problem: on a bench situation with 1000 aircraft and 10 observations per aircraft,
the solution if found within a 1% accuracy in 2 minutes on a PC with 3.2Ghz Xeon
processor. It is anyway possible to do even better by changing the Krylov subspace to:

Kn(L, r(0))

that still allows super-linear convergence but at the expense of a single matrix-vector
product in each iteration. Furthermore, it is no longer needed to explicitly form the
design matrix L, thus drastically reducing memory needs. With this Krylov subspace
method, it is possible to address problems with 10000 aircraft and 10 observations per
aircraft while keeping resolution times within the 10 minutes range.

It has to be noted that it is in principle possible to design a fully parallel algorithm on
a cluster of computers.

4.4.2 Local linear models

Let x ∈ S be given. Instead of finding a global fitting vector field X, we look at the
Taylor expansion of X in a neighborhood of x:

X(u) =X(x) + X ′(x)(u− x) + o(‖u− x‖)

Of course X(x) and X ′(x) are unknown since X itself is unknown, but it is possible,
since the Taylor expansion (without the o term) is linear, to estimate them as the
optimal solution of the least square problem:

N∑

i=1

w(‖x− xi‖)‖vi − a−M(xi − x)‖2

with a ∈ R3 the approximation of X(x) and M a square 3 × 3 matrix approximating
X ′(x). w is a non negative window function of unit L1 norm enforcing the fact that
the solution is valid only in a neighborhood of x. Classical choices for w are:

• w(t) = 3
4πs3 1[0,s](t), s > 0.

• w(t) = 15
2πs5 (1− t)21[0,s](t), s > 0 (“Epanechnikov”).

• w(t) =
√

8π
σ e−

t2

2σ2 , σ > 0 (Gaussian window).
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The length s of the window (or the standard deviation σ in the Gaussian case) is
a free parameter of the method that needs to be adjusted. When it is small, only
the aircraft close to x are really significant: the vector field X tends to follow closely
these observations at the expense of lower smoothness. On the other hand, high s

or σ values produce very smooth fields with poor interpolation properties. One way
of finding an optimal balance between the two criteria is by leave-one-out procedure
(an efficient implementation exists for local linear models). An heuristic approach is
possible too, a good choice being that the window has to include a fixed (between 5%
and 20 %) amount of the samples: this gives in practice sufficiently good results. To
obtain a closed form expression for a,M , it is convenient to define V, W to be the
N -dimensional vector:

V = (v1, . . . , vN )

W to be the N ×N diagonal matrix:

W = diag(w(‖x− x1‖), . . . , w(‖x− xN‖))

and A the N × 4 matrix:

A =




1 x1 − x

1 x2 − x

. . . . . .

1 xN − x




With this convention, the least square criterion can be written in a synthetic form:

‖W 1/2(V −AL)‖2

where the norm is in RN and L is the matrix of unknowns:

L =




a

tM




Solving for M can be done classically using normal equations. The optimal L has to
satisfy:

tAW (V −AL) = 0

or, if (tAAW ) has full rank:

L = (tAAw)−1tAWV

The inverse of tAAW is never computed directly: instead, the Cholesky decomposition
tZZ = tAAW with Z lower triangular is used. It is sometimes interesting, namely
to increase numerical stability, to use QR decompositions instead of solving using the
previous expression. For that purpose, a reduction by orthogonal transformation is
applied and yields an equivalent problem with criterion:

‖tQW 1/2V −RL‖2
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with R a block upper triangular matrix. For large N , QR reduction involves about
twice as many operations than normal equations, for an increase in numerical accuracy
and stability (the interested reader is referred to [25]). In our case, speed of evaluation
is more important than numerical properties. Furthermore, the matrix:

tAAW

is only 4 × 4, so that Cholesky decomposition almost never breaks. The overall com-
plexity for evaluating X(x) scales linearly with the number of aircraft measurements.
When the window function w is compactly supported, algorithmic complexity is further
reduced since only a subset of the complete sample has to be included for evaluating
the model at a point: if the heuristic approach is chosen, scaling is still linear with the
number of samples, but the constant of proportionality is reduced.

An obvious interest of the method is that it produces also an estimate of the matrix
X ′(x) that is of great interest for the computation of Lyapunov exponents.

4.5 Limits of the method for the A3 ConOps application

A main drawback of the approach described in this chapter is that it is computationally
demanding. The bottleneck is represented by the computation of a smooth vector field
that matches the (observed or predicted) values of the aircraft velocities at the sample
points.
As we have seen, this problem can be formulated as that of optimizing a functional
related to the derivatives of the field under the interpolation constraint and, in the
case when the field is assumed to be time independent, its solution can be expressed as
a weighted sum of radial basis functions known as vector splines. The weights in the
sum are determined by solving a linear system of equations, whose complexity scales
as n3 where n is the number of samples. Improvements on the computation speed have
been made by using Krylov solvers. Remaining possible speed-up are more related to
hardware: it seems that the code can be made parallel and run on cluster of GPUs to
achieve a speed-up factor of 100-1000.
Alternatively, local linear models could be used in place of spline interpolation. Local
linear models present the advantage that a modification of a single aircraft trajectory
will affect the vector field only locally, in the area where the aircraft is flying, which
allows a simpler update of complexity in trajectory management operations. In turn,
the reconstructed vector field has no special smoothness properties, nor is the minimizer
of any functional as in the case of splines.

It is important to note that for complexity prediction on mid term and long term time
horizons, a time dependent vector field should be identified as pointed out in [18]. This
is particularly critical to distinguish between a situation where two aircraft get close
one to the other from a situation where the two aircraft occupy nearby positions but
at different time instances within the reference look-ahead time horizon. Only in the
former case, a conflict could take place.
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The extension to the time-dependent case, however, is computationally even more
challenging, which makes the approach not suitable for the time scale of the applications
discussed in Chapter 2, at least at the current stage of development of the approach.
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5 Novel methods for complexity evaluation

In this chapter we describe two novel methods for complexity evaluation that have been
developed to better suit the requirements stemming from the airborne self separation
application.

The key distinguishing feature is that the first method accounts for uncertainty in
the prediction of the aircraft future position when evaluating complexity, whereas the
second method neglects uncertainty and relies on the aircraft RBT to predict the
aircraft position.

A detailed comparison between the two methods is postponed to Section 5.3, which
includes the results of some test that was designed to assess the performance of the
methods in terms of capability of identifying air traffic configurations that are difficult
to control in a decentralized way.

5.1 A probabilistic approach to complexity evaluation

5.1.1 Introduction

In this section, we describe a method to air traffic complexity evaluation that was
conceived within WP3. Its main distinguishing feature is that it explicitly accounts for
the uncertainty affecting the future aircraft positions, [60]. Despite the extensive studies
on uncertainty in the modeling and analysis of ATM systems by various researchers,
see e.g. [21], [54], [56] and [44], its effect on air traffic complexity evaluation has not
received adequate attention. Deterministic models for predicting the aircraft future
positions along the look-ahead time horizon have been in fact adopted in the literature
for complexity evaluation.

The introduced complexity measure is based on the notion of probabilistic occupancy
of the airspace: complexity is evaluated in terms of proximity in time and space of
the aircraft present in the traffic as determined by their intent and current state,
while taking into account uncertainty in the aircraft future position. Indeed, since
complexity evaluation on some look-ahead time horizon relies on trajectory prediction,
the uncertainty in the aircraft position plays a critical role in complexity evaluation.
Specifically, air traffic complexity at a point x in an airspace region S ⊂ R3 and at time
t within some look-ahead time horizon T is evaluated as the probability that a certain
buffer zone in the airspace surrounding x will be “congested” within [t, t + ∆], with
∆ > 0. By defining congestion as the simultaneous occupancy of the buffer zone by a
certain number of aircraft and evaluating this complexity measure at all possible points
in S, a complexity map can be built. Forming the complexity maps associated with
different consecutive time intervals allows to predict when the aircraft will enter and
leave a particular zone in the airspace, and to identify regions of the airspace S with a
limited inter-aircraft maneuverability space. Avoiding these high complexity areas will
prevent an additional aircraft entering S from excessive tactical maneuvering.
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The attempt is to measure complexity as the effort required to determine a feasible,
not necessarily optimal, resolution maneuver. This would make complexity evaluation
independent of the adopted optimality criterion and of the actual controller in place,
which is accounted for indirectly, through its effect on the air traffic organization.

5.1.2 Complexity from a global perspective

Consider N aircraft Ai, i = 1, . . . , N , flying in the 3-D airspace S ⊂ R3 during the
look-ahead time horizon T = [0, t̄], with t = 0 representing the current time instant
and t̄ > 0 the time horizon length. Suppose that each aircraft is following a nominal
trajectory with a velocity profile uAi : T → R3, starting from the initial position xAi

0 at
time t = 0. The aircraft future position during T is not known exactly, and we assume
that the prediction error can be modeled through a Gaussian random perturbation
whose variance grows not only linearly with time t but also faster in the along-track
direction (namely the direction of uAi) than in the cross-track directions (i.e., directions
orthogonal to uAi). The predicted position xAi(t) ∈ R3 at time t ∈ T of aircraft Ai is
then given by

xAi(t) = xAi
0 +

∫ t

0
uAi(s)ds + QAi(t)ΣAiBAi(t), t ≥ 0, (5)

where BAi(t) is a standard 3-D Brownian motion starting from the origin whose
variance is modulated by the matrix QAi(t)ΣAi ∈ R3×3. More precisely, ΣAi =
diag(σAi

1 , σAi
2 , σAi

3 ) is a diagonal matrix whose entries σAi
1 , σAi

2 , and σAi
3 are the variance

growth rates of the perturbation in the along-track direction and the two cross-track di-
rections and satisfy σAi

1 ≥ σAi
2 = σAi

3 > 0, whereas QAi(t) =
[
qAi
1 (t) qAi

2 (t) qAi
3 (t)

]
∈

R3×3 is an orthogonal matrix whose first column qAi
1 (t) is aligned with uAi(t): qAi

1 (t) =
uAi (t)

‖uAi (t)‖ . Similar models have been proposed in [22], [55] and [57] for predicting aircraft
trajectories over a mid-term look-ahead time horizon of tens of minutes.

For each x ∈ S, let us consider the ellipsoidal region M(x) centered at x and defined
as:

M(x) =
{
x̂ ∈ R3 : (x̂− x)T M(x̂− x) ≤ 1

}
, (6)

where M ∈ R3×3 is a diagonal matrix given by

M = diag
(

1
rh

2
,

1
rh

2
,

1
rv

2

)
,

with rh ≥ rv > 0 defining the size of the ellipsoid in the horizontal plane and in the
vertical direction. If rh = rv, then the ellipsoid reduces to a sphere of radius rh, and
proximity in the horizontal plane is weighted the same as that in the vertical direction.
Typically, rh > rv since vertical proximity between aircraft is considered in ATM to be
less critical than horizontal proximity.

The complexity of air traffic within the airspace region S can be evaluated through the
following occupancy measures.
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Definition 1 (first order probabilistic occupancy measure) The first order prob-
abilistic occupancy γ1(x, t) at position x ∈ S within the time interval [t, t + ∆] ⊆ T is
defined as

γ1(x, t) := P
(
xAi(t) ∈M(x), for some t ∈ [t, t + ∆] and i ∈ {1, 2, . . . , N}) (7)

and represents the probability of at least one aircraft entering the ellipsoid M(x) within
the time frame [t, t + ∆].

Note that γ1(x, t) = 0 means that none of the existing aircraft will be inside the ellipsoid
M(x) during the time interval [t, t + ∆]. On the other hand, γ1(x, t) = 1 implies that
with certainty there will be at least one aircraft within M(x) at some time instant
belonging to [t, t + ∆].

Similarly, we can define the second order probabilistic occupancy measure.

Definition 2 (second order probabilistic occupancy measure) The second or-
der probabilistic occupancy γ2(x, t) at position x ∈ S within the time interval [t, t+∆] ⊆
T is defined as

γ2(x, t) :=P
(
xAi(t) and xAj (t′) ∈M(x) for some t, t′ ∈ [t, t + ∆] and

i 6= j ∈ {1, 2, . . . , N}) (8)

and represents the probability of at least two aircraft entering the ellipsoid M(x) within
the time frame [t, t + ∆].

If γ2(x, t) = 0, then there will be at most a single aircraft inside the ellipsoid M(x)
within the time interval [t, t + ∆]. Hence, at any time t ∈ [t, t + ∆], an aircraft passing
throughM(x) will not be sharingM(x) with any of the other N aircraft. If γ2(x, t) = 1,
then with probability 1, at least two aircraft will enter the ellipsoid M(x) during the
time interval [t, t + ∆], though possibly not at exactly the same time.

By letting x vary over S, one can define the first order and second order probabilistic
occupancy maps of the airspace region S within the time frame [t, t + ∆] as follows:

Γ1(·, t) : x ∈ S → γ1(x, t)

Γ2(·, t) : x ∈ S → γ2(x, t).

Evidently, at any point x ∈ S, the Γ2 map has a value smaller than or equal to the Γ1

map, since the corresponding events are nested.

Higher order probabilistic occupancy measures and maps can also be defined according
to a similar procedure.

Forming the probabilistic occupancy maps for different consecutive time intervals allows
to predict when the aircraft enter and leave a certain zone in the airspace, and to define
the occupancy of the airspace region S. This information can be used for detecting
congested areas (i.e., areas where multi-aircraft encounters with limited inter-aircraft
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spacing are likely to occur) in the time-space coordinates, and to identify surrounding
areas where the traffic could be deviated. The presence of a region with a high value
of the second order probabilistic occupancy implies a high likelihood that two or more
aircraft will get close in time and space, hence having a conflict. Trajectories should
be designed so as to reduce second order probabilistic occupancy.

More compact global information can be obtained according to the following procedure.
Let us parameterize the ellipsoidal region M(x) defined in (6) through a scaling factor
ρ > 0 as follows:

Mρ(x) =
{
x̂ ∈ R3 : (x̂− x)T M(x̂− x) ≤ ρ2

}
, (9)

so that, by varying ρ, the ellipsoidal region can be either squeezed (ρ < 1) or enlarged
(ρ > 1). Denote the complexity measures associated with regionMρ and parameterized
by ρ as γρ

1(x, t) and γρ
2(x, t). Both γρ

1(x, t) and γρ
2(x, t) are increasing as a function of

ρ.

Let

ρmax(t) := sup{ρ ≥ 0 : sup
x∈S

γρ
2(x, t) ≤ pT },

where pT is some threshold value for the probability that two aircraft come close one
to the other, and define

ρ?
max := sup

t∈T
ρmax(t).

Then, one can take

ξ :=
1

ρ?
max

as a synthetic indicator of complexity of the traffic during the time horizon T . Note
that the extent of the available maneuverability space as measured by ξ will depend
on both the local aircraft density and the traffic dynamic through the aircraft intent.
Since uncertainty in the predicted aircraft position models possible deviations of the
aircraft from their intended trajectory, ξ can be interpreted as a measure of robustness
of air traffic to perturbations of the nominal situation.

5.1.3 Complexity from a single aircraft perspective

Given the decentralized nature of airborne self separation, it also makes sense to intro-
duce a complexity measure related to a single aircraft.

The global complexity measures in Section 5.1.2 can be easily adapted to provide a
measure of complexity from the perspective of a single aircraft. To this end, suppose
that an additional aircraft, say aircraft B, enters an airspace region S where N air-
craft Ai, i = 1, 2, . . . , N , are present. According to Definitions 1 and 2, complexity is
evaluated from a global perspective as the probability of occupancy of a buffer zone
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surrounding a point by a certain number of aircraft (at least one aircraft for the first
order complexity and at least two for the second order complexity). Suppose that air-
craft B is following a nominal trajectory x̄B : T → R3. The idea is to evaluate the
complexity encountered by aircraft B along its nominal trajectory by making the buffer
zone move along the trajectory of aircraft B and computing the probability that some
of the other aircraft Ai, i = 1, 2, . . . , N , will enter such moving zone. This leads to the
following definition of single-aircraft complexity.

Definition 3 (single-aircraft probabilistic complexity measure) The complex-
ity experienced by aircraft B along its nominal trajectory x̄B : T → S within the
time interval [t, t + ∆] is defined as:

γB(t) := P
(
xAi(t) ∈M(x̄B(t)) for some t ∈ [t, t + ∆] and i ∈ {1, 2, . . . , N}) (10)

Interestingly, if the time window [t, t + ∆] extends to the whole look-ahead time hori-
zon T and the buffer zone reproduces the protection zone surrounding each aircraft,
the single-aircraft complexity measure can as well be interpreted as the probability of
aircraft B getting in conflict with another aircraft Ai within T . CD&R then becomes
an integrable task in complexity evaluation.

According to a reasoning similar to that in Section 5.1.2, based on the re-scaled ellip-
soidal region (9) and the corresponding single-aircraft complexity function γρ

B : T →
[0, 1], we can introduce function ρmax,B : T → R+ given by

ρmax,B(t) := sup{ρ ≥ 0 : γρ
B(t) ≤ pT },

and define

ρ?
max,B := sup

t∈T
ρmax,B(t).

ρ?
max,B is an index of robustness of the nominal trajectory of aircraft B. The larger is

ρ?
max,B, the more aircraft B is far from the other aircraft, both in time and in space,

with high (> 1−pT ) probability, and, hence, the larger is the robustness of its trajectory
to possible deviations of the other aircraft from their intent.

The quantity

ξB :=
1

ρ?
max,B

can then be taken as synthetic indicator of the air traffic complexity from the per-
spective of aircraft B during the time horizon T . Let ρsafe denote the value of ρ such
that Mρ(x) represents the protection zone surrounding an aircraft positioned at x.
If ξB > 1

ρsafe
, then, some conflict can occur with probability ≥ pT and the criticality

of this conflict can be better assessed by computing, for instance, the earliest conflict
time:

t?B = min{t ≥ 0 : ρmax,B(t) < ρsafe}.
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The introduced single-aircraft complexity measure (10) can be used by aircraft B to
evaluate the maneuverability space surrounding its nominal trajectory and to even-
tually redesign its trajectory so as to improve its robustness. According to a similar
perspective, in the works on trajectory flexibility [35, 34] it is suggested that, to achieve
the aggregate objective of avoiding excessive ‘air traffic complexity’ in autonomous air-
craft ATM, aircraft should plan their trajectory so as to preserve maneuvering flexibility
to accommodate possible disturbances stemming, for example, from other traffic.

5.1.4 Computational aspects

In this section we address the issue of determining analytic –though approximate– ex-
pressions of the probabilistic occupancy measures γ1(x, t) and γ2(x, t) representing the
probability of multiple (at least one for γ1 and at least two for γ2) aircraft entering the
same buffer zone M(x) within [t, t + ∆]. Approaches for computing this probability
are usually computationally intensive as the required computing time typically grows
exponentially with the number of aircraft, e.g. [31]. Here, analytic formulas approxi-
mating this probability will be derived, which results in a linear growth of computation
time with the number of aircraft. These formulas can be extended to estimate the
single-aircraft complexity measure γB(t), as explained at the end of this section.

Denote as PAi(x, [ts, tf ]) the probability that aircraft Ai enters the ellipsoid M(x)
centered at x ∈ S within the time frame [ts, tf ]:

PAi(x, [ts, tf ]) := P
(
xAi(t) ∈M(x) for some t ∈ [ts, tf ]

)
. (11)

If the Brownian motions affecting the future positions of the N aircraft are assumed to
be independent, then the first order and second order probabilistic occupancy measures
(7) and (8) satisfy:

γ1(x, t) = 1−
N∏

i=1

(1− PAi(x, [t, t + ∆])) (12)

γ2(x, t) = 1−
N∏

i=1

(1− PAi(x, [t, t + ∆]))

−
N∑

i=1

PAi(x, [t, t + ∆])
N∏

j=1,j 6=i

(1− PAj (x, [t, t + ∆])), (13)

and the problem of evaluating complexity reduces to that of estimating the probability
PAi(x, [ts, tf ]).

Remark 1 Note that the assumption of independent Brownian motions is reasonable if
the correlation due to the effect of wind is negligible and, in particular, if the N aircraft
are flying far apart, [31], [11]. In presence of non-negligible wind correlation, the above
expressions represent only approximations of the probabilistic occupancy measures γ1

and γ2.
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We next determine an analytic approximation of the probability PAi(x, [ts, tf ]) in (11).
The obtained approximate expression is then used to estimate γ1(x, t) and γ2(x, t)
through (12) and (13). Derivations refer first to the case of aircraft following straight
line nominal trajectories with constant velocity and are then extended to multi-legged
nominal trajectories specified by a sequence of timed way points.

Analytical approximation of PAi(x, [ts, tf ]) For ease of notation, in this subsection
we shall refer to aircraft Ai as aircraft A, dropping the subscript.

One-leg nominal trajectory case: Under the assumption that aircraft A is fol-
lowing a straight line nominal trajectory with constant velocity, equation (5) can be
rewritten as

xA(t) = xA
0 + uAt + QAΣABA(t), t ≥ 0.

From this equation, we have that the relative position ∆x(t) = x− xA(t) of aircraft A

with respect to the point x is given by

∆x(t) = ∆x0 + ∆u t− n(t), (14)

where we set ∆x0 = x− xA
0 , ∆u = −uA and n(t) = QAΣAB(t).

Equation (14) suggests that we can evaluate PA(x, [ts, tf ]) by determining the proba-
bility that the perturbation n(t) hits an ellipsoid whose center is moving at a constant
velocity ∆u starting from ∆x0: n(t) ∈M(∆x0 + ∆u t), for some t ∈ [ts, tf ].

Define the vector
v = Ω−1∆u

with Ω := QAΣA. An orthogonal matrix P =
[
p1 p2 p3

]
∈ R3×3 can be constructed

whose first column p1 = −v/‖v‖ is aligned with −v (the choice of p2 and p3, hence
P , is not unique). Its inverse P−1 = P T represents a rotation that makes the −v/‖v‖
direction coincide with the first coordinate axis direction:

P−1 −v

‖v‖ = e1 :=
[
1 0 0

]T
.

Using the coordinate transformation ∆z(t) = P−1Ω−1∆x(t), we transform (14) to the
following:

∆z(t) = a + wt− B̂(t), (15)

where B̂(t) := P−1B(t) is still a standard Brownian motion starting from the origin
(rotation of a Brownian motion is still a Brownian motion), and a ∈ R3, w ∈ R3 are
defined by

a = P−1Ω−1∆x0, w = P−1Ω−1∆u = P−1v = −‖v‖e1.
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Figure 5: Ellipsoidal protection zone Et in the new coordinates.

From equation (15), we can again think of computing PA(x, [ts, tf ]) as determining the
probability that the standard Brownian motion B̂(t) starting from the origin hits a
moving ellipsoid Et obtained by transforming M(∆x0 + ∆ut) in the new coordinate
system, that is:

PA(x, [ts, tf ]) = P
(
B̂(t) ∈ Et for some t ∈ [ts, tf ]

)
, (16)

where
Et =

{
z : (z − (a + wt))T P T ΩT MΩP (z − (a + wt)) ≤ 1

}
.

The center of Et is moving at the constant velocity w starting from a. From our choice
of matrix P , the velocity w is directed along the negative ∆z1 axis (see Figure 5).

We next find an analytical approximation for the probability in (16). For a fixed time
t ∈ [ts, tf ], define pt as the plane that passes through the center ∆zc = a + wt of the
ellipsoid Et and is orthogonal to its velocity w (hence orthogonal to the ∆z1-axis).
Then pt divides the ellipsoid Et into two equal parts. We shall first find the projection
of Et onto the plane pt and then the minimum bounding rectangle containing such a
projection.

Let πt : R3 → pt be the orthogonal projection operator onto the two dimensional plane
pt which can be identified with R2. Then, the projection Ẽt := πt(Et) of Et onto pt is
itself an ellipse centered at z̃c := πt(∆zc) ∈ R2. Specifically, a point z̃ ∈ R2 belongs to

Ẽt if and only if there exists some z1 ∈ R such that ∆z =

[
z1

z̃

]
∈ Et or, equivalently,

(∆z −∆zc)T P T ΩT MΩP (∆z −∆zc) ≤ 1. (17)
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Write P T ΩT MΩP in block matrix form as:

P T ΩT MΩP =

[
α yT

y R

]
,

where R ∈ R2×2, y ∈ R2, and α ∈ R. Since P T ΩT MΩP is positive definite, we must
have that R is positive definite and α > 0. Then condition (17) is equivalent to

α(z1 −∆zc
1)

2 + 2yT (z̃ − z̃c) (z1 −∆zc
1) + (z̃ − z̃c)T R (z̃ − z̃c) ≤ 1, (18)

for some z1 ∈ R. The left-hand-side of (18) is a quadratic function in z1 whose minimum
with respect to z1 is given by

(z̃ − z̃c)T R (z̃ − z̃c)− 1
α

[
yT (z̃ − z̃c)

]2
= (z̃ − z̃c)T R̃ (z̃ − z̃c) ,

where R̃ ∈ R2×2 is the positive definite matrix defined by

R̃ := R− yyT

α
.

Condition (18) is equivalent to that its left-hand-side minimum with respect to z1 is
smaller that its right-hand-side. This yields the exact expression of the projection
ellipse Ẽt as:

Ẽt =
{

z̃ ∈ R2 : (z̃ − z̃c)T R̃ (z̃ − z̃c) ≤ 1
}

.

We now determine the rectangle on pt that encloses Ẽt and has the smallest area,
namely, the minimum bounding rectangle of Ẽt. This rectangle, denoted by S̃t, will be
used in the approximation of the probability PA(x, [ts, tf ]).
We decompose the positive definite matrix R̃ as

R̃ =
[
v1 v2

]
diag (λ1, λ2)

[
v1 v2

]T
, (19)

where λ1 and λ2 are the eigenvalues of R̃ with λ1 ≥ λ2 > 0, and v1 and v2 are the
corresponding eigenvectors which can be assumed to be an orthonormal pair. Then v2

identifies the direction of the major axis of the ellipse Ẽt, along which Ẽt has length
2√
λ2

, whereas v1 identifies the minor axis direction, along which Ẽt has length 2√
λ1

. As

a result, the minimum bounding rectangle S̃t of the ellipse Ẽt is the one centered at
z̃c, with length 2√

λ2
along the v2 direction and 2√

λ1
along the v1 direction.

Recall that the probability of interest PA(x, [ts, tf ]) that aircraft A enters the ellipsoid
M(x) within [ts, tf ] is expressed in (16) as the probability that the Brownian motion
B̂(t) starting from the origin hits the ellipsoid Et whose center moves in the negative
∆z1-axis direction starting from a at time 0. The analytical expression of such a
probability is difficult to obtain. We then suggest to approximate it by the probability
that, when B̂(t) first hits the moving plane pt, the hitting location is inside the minimum
bounding rectangle S̃t of the projected ellipse Ẽt.
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Remark 2 The idea underlying this approximation scheme is that, since the velocity
w of the ellipsoid is typically much larger than the growth rate of the variance of the
Brownian motion, then, the only dimension of the ellipsoid that is relevant for the
event of interest is that perpendicular to w. Using the minimum bounding rectangle S̃t

in place of the projected ellipse Ẽt then introduces an over-approximation error.
A similar approximation scheme was used in [57] with reference to the problem of
computing the probability of conflict in the 2-D case. A formal discussion on the quality
of the approximation is reported in [30].

Define τ := inf{t ≥ 0 : B̂(t) ∈ pt} to be the first time that the Brownian motion B̂(t)
ever hits the moving plane pt. Since the three coordinates of B̂(t) are independent one-
dimensional Brownian motions, and the directions orthogonal to plane pt and along
which the plane pt is moving are both aligned with the ∆z1-axis, it is easy to see that
τ depends only on the first component B̂1(t) of B̂(t). Specifically, τ is the first time
that the one-dimensional Brownian motion B̂1(t) starting from the origin hits a point
z1(t) ∈ R that moves according to the dynamics z1(t) = a1−‖v‖t, where a1 is the first
component of a ∈ R3.

Note that a1 < 0 implies that the aircraft A is moving away from the ellipsoid M(x)
in the x-coordinates and results in approximately zero probability of entering M(x).
For the purpose of complexity evaluation, we then set PA(x, [ts, tf ]) = 0 when a1 < 0.

When a1 ≥ 0, the probability distribution of τ is characterized by the following lemma.

Lemma 2 (Bachelier-Levy, [20]) Define τ := inf{t ≥ 0 : B̂1(t) = a1 − ‖v‖t} to be
the first time the 1-D Brownian motion B̂1(t) starting from the origin reaches a point
moving at the speed ‖v‖ towards the origin starting from some a1 ≥ 0. Then, τ has the
probability density function:

pτ (t) =
a1√
2πt3

e−
(a1−‖v‖t)2

2t , t ≥ 0. (20)

Lemma 3 ([30]) Let pτ (t) be the probability density function of τ as given in (20)
and assume a1 ≥ 0. Then for any tf ≥ 0,

∫ tf

0
pτ (t) dt = Q

(
a1t

−1/2
f − ‖v‖t1/2

f

)
+ e2a1‖v‖Q

(
a1t

−1/2
f + ‖v‖t1/2

f

)
, (21)

∫ tf

0
t pτ (t) dt =

a1

‖v‖Q
(
a1t

−1/2
f − ‖v‖t1/2

f

)
− a1

‖v‖e2a1‖v‖Q
(
a1t

−1/2
f + ‖v‖t1/2

f

)
,

where Q(x) :=
∫∞
x

1√
2π

e−
x2

2 dx is the Q-function, which is related to the error function

erf(·) by: Q(x) = 1
2 − 1

2erf(
x√
2
). In particular, letting tf →∞, we have

∫∞
0 pτ (t) dt = 1

and

E[τ ] =
∫ ∞

0
t pt?(t) dt =

a1

‖v‖ .
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Let πτ (B̂(t)) ∈ R2 be the projection of the Brownian motion B̂(t) at the hitting
time τ onto the plane pt. Conditioning on τ = t, the distribution of πτ (B̂(t)) is a
two-dimensional Gaussian random variable with zero mean and covariance tI2; hence
πτ (B̂(t)) ∼ W1v1 + W2v2, where v1 and v2 are the orthonormal pair given in (19), and
W1,W2 ∼ N(0, t) are independent one-dimensional Gaussian random variables. More-
over, by our previous discussions, the minimum bounding rectangle S̃t can be expressed
as the set of all α1v1+α2v2 with |α1−vT

1 ã| ≤ 1√
λ1

and |α2−vT
2 ã| ≤ 1√

λ2
where ã = π(a)

is the projection of a onto pt, which coincides with z̃c.

As a result, g(t) := P
(
πτ (B̂(t)) ∈ S̃τ

∣∣ τ = t
)

can be computed as follows

g(t) = P
(
W1v1 + W2v2 ∈ S̃t

)

= P

(∣∣W1 − vT
1 ã

∣∣ ≤ 1√
λ1

)
· P

(∣∣W2 − vT
2 ã

∣∣ ≤ 1√
λ2

)

=
[
Q

(
vT
1 ã
√

λ1 − 1√
λ1t

)
−Q

(
vT
1 ã
√

λ1 + 1√
λ1t

)] [
Q

(
vT
2 ã
√

λ2 − 1√
λ2t

)
−Q

(
vT
2 ã
√

λ2 + 1√
λ2t

)]
.

(22)

Finally, an approximated expression for PA(x, [ts, tf ]) can be computed as

P̂A(x, [ts, tf ]) =
∫ tf

ts

g(t)pτ (t) dt. (23)

Evaluating expression (23) involves an integration, which may be time-consuming.
Thus, simplified expressions that are easier to compute are needed. One way to ap-
proximate (23) is to expand g(t) around te := E[τ |ts ≤ τ ≤ tf ]. If a zero-th order
expansion is used, then

P̂A(x, [ts, tf ]) ' g(te)
∫ tf

ts

pτ (t) dt, (24)

which can then be evaluated using (21) in Lemma 3. The time instant te is the expected
time that the Brownian motion B̂(t) hits the plane pt conditioning on that it hits within
the time interval [ts, tf ] and is given by

te =

∫ tf
ts

t pτ (t) dt
∫ tf
ts

pτ (t) dt
,

where
∫ tf
ts

t pτ (t) dt =
∫ tf
0 t pτ (t) dt− ∫ ts

0 t pτ (t) dt can be evaluated using Lemma 3.

Using a first order approximation of g(t) ' g(te)+(t− te)ġ(te) around t = te, we obtain

P̂A(x, [ts, tf ]) ' [g(te)− teġ(te)]
∫ tf

ts

pτ (t) dt + ġ(te)
∫ tf

ts

t pτ (t) dt, (25)

where ġ(t) = dg(t)
dt can be computed from (22) using the fact that Q(x) =

∫∞
x e−z2/2dz

as

ġ(te) = −
√

2π

2te

{
[Q(u1)−Q(u2)](u4e

−u4
2 − u3e

−u3
2
) + [Q(u3)−Q(u4)](u2e

−u2
2 − u1e

−u1
2
)
}

,
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with

u1 :=
vT
1 ã
√

λ1 − 1√
λ1t

, u2 :=
vT
1 ã
√

λ1 + 1√
λ1t

, u3 :=
vT
2 ã
√

λ2 − 1√
λ2t

and u4 :=
vT
2 ã
√

λ2 + 1√
λ2t

.

Multi-legged nominal trajectory case: We consider now the case when the nom-
inal velocity of aircraft A is not constant throughout the whole time horizon T but
only during each element [tj , tj+1], j = 1, 2, . . . , m, of a finite partition of T .

Suppose that [ts, tf ] ⊆ [tj , tj+1] for some j ∈ {1, 2, . . . , m}, and denote by uA
j the

constant nominal velocity of A within [tj , tj+1]. Then, the predicted position of aircraft
A along the time interval [ts, tf ] can be expressed as

xA(t) = x̃A
0 + uA

j t + QAΣABA(t), (26)

where

x̃A
0 = xA

0 +
∫ ts

0
uA(s)ds− uA

j ts

is a fictitious initial condition such that the straight line trajectory travelled from x̃A
0 at

constant velocity uA
j coincides with the actual nominal trajectory of aircraft A within

the time interval [ts, tf ]. Then, the procedure described in the one-leg case can be
applied to determine an estimate of PA(x, [ts, tf ]) based on (26).

If the condition [ts, tf ] ⊆ [tj , tj+1) is not satisfied, we can partition [ts, tf ] in sub-
intervals [τh, τh+1], h = 1, . . . , p, each one corresponding to a leg of the nominal trajec-
tory and over-approximate as follows:

P̂A(x, [ts, tf ]) =
p∑

h=1

PA(x, [τh, τh+1]).

Each PA(x, [τh, τh+1]) can then be estimated through the procedure described above.

Analytic approximation of the probabilistic occupancy measures An an-
alytic approximation of γ1(x, t) and γ2(x, t) can be easily obtained by plugging the
estimates P̂Ai(x, [ts, tf ]) of PAi(x, [ts, tf ]), i = 1, 2, . . . , N , into the formulas (12) and
(13), thus getting

γ̂1(x, t) = 1−
N∏

i=1

(1− P̂Ai(x, [t, t + ∆])) (27)

γ̂2(x, t) = 1−
N∏

i=1

(1− P̂Ai(x, [t, t + ∆]))

−
N∑

i=1

P̂Ai(x, [t, t + ∆])
N∏

j=1,j 6=i

(1− P̂Aj (x, [t, t + ∆])), (28)
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These expressions show that the computational effort involved in the evaluation of
complexity at position x ∈ S scales linearly with the number of aircraft N and, hence,
it does not radically increases when an additional aircraft is introduced. Suppose in fact
that computing P̂Ai(x, [ts, tf ]) for aircraft Ai takes a unit time. In an airspace region
with N aircraft, a total of N time units is taken to compute P̂Ai(x, [ts, tf ]) for all the
N aircraft. Once all P̂Ai(x, [ts, tf ]), i = 1, 2, . . . , N , are obtained, both the γ1(x, t) and
the γ2(x, t) metrics can be computed with a constant number of additional operations.
Higher order complexity measures could be also estimated based on P̂Ai(x, [ts, tf ]),
i = 1, 2, . . . , N , at no additional cost.

This is an important property, since real time computability is typically required in
time-critical operations such as CD&R.

Computing the single-aircraft complexity measure The procedure for approxi-
mating the first order probabilistic occupancy γ1(x, t) can be easily adapted to compute
an analytical approximation of the single-aircraft probabilistic complexity γB(t) defined
in (10). Indeed, γB(t) can be expressed as

γB(t) = 1−
N∏

i=1

(1− PAi(x̄B(t), [t, t + ∆])),

and to compute PAi(x̄B(t), [t, t + ∆]) one just needs to consider the relative position
of aircraft Ai with respect to aircraft B rather than with respect to the fix position
x. If aircraft B enters S at time 0 starting from x with a constant velocity uB, then,
this will lead to an equation of the same form of equation (14) with the only difference
being that ∆u = uB − uA

i .

Construction of the probabilistic occupancy maps and of the scalar-valued
function describing the complexity experienced by a single aircraft In order
to build the probabilistic occupancy maps, one has to evaluate γ1(x, t) and γ2(x, t)
across S, at ∆-spaced sampled times along the reference time horizon T . This calls
for some discretization of S. Using an uniform gridding of step size δ > 0 along all
axes will result in O(δ−3) grid points. Halving the step size, for example, would then
result in eight times more grid points. It then follows that evaluating the complexity
maps Γ1(·, t) and Γ2(·, t) in an airspace region S with N aircraft would require a
computational time proportional to Nδ−3.

One possible way to alleviate the exponential growth of computation time as the grid
size decreases would be to use a variable sized grid. A coarser grid could be used
to evaluate the complexity in regions that do not require a significant accuracy (e.g.
regions sufficiently far from the nominal trajectories of the aircraft), while a finer grid
could be used in regions requiring higher accuracy. The identification of such regions
might be done using the complexity maps from the previous time interval.

As for the scalar-valued function describing the complexity experienced by a single
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aircraft along its planned trajectory, perspective, one has to evaluate γB(t) at ∆-
spaced sampled times along the reference time horizon T , hence is not affected by the
exponential growth of sampled points as in the case of spatial gridding.

5.1.5 Numerical examples

A 2D numerical example Consider a rectangular airspace region S where 6 aircraft
are following a one-leg nominal trajectory from some starting to some destination
position during the look-ahead time horizon T = [0, t̄] with t̄ = 15 minutes (min),
while trying to keep at a minimum safe distance ρsafe = 3 nautical miles (nmi). The
configuration of the aircraft nominal trajectories is shown in Figure 6, where starting
positions are marked with ∗ and destination positions with ¦.

0 20 40 60 80 100 120
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80
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120

Figure 6: Sample paths of 6 aircraft moving from starting position (∗) to destination
position (¦), while trying to keep at a distance 3 nmi.

The trajectories in this figure are obtained by implementing the decentralized resolution
strategy introduced in [57], which accounts for the uncertainty affecting the aircraft
motion according to a similar model for the aircraft predicted motion. According to
this strategy, resolution maneuvers involve only heading changes.

In the 2D level-flight case, the ellipsoidal regionM(x) in (6) for complexity computation
becomes a circle of radius rx. In this example we set rx = 1 so that the scaling factor
ρ becomes the actual radius of the re-scaled ellipsoidal region Mρ(x) in (9).

The global complexity of the considered air traffic system obtained with pT = 0.2 is
ξ2 ' 3, which means that aircraft are only guaranteed to keep at a distance of about
0.33 nmi, with probability greater than 0.8.

The probabilistic occupancy map Ξ2 : S → [0, 1] plotted in Figure 7 is obtained by
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condensing the timing information as follows:

Ξ2(x) =
1
t̄

∫ t̄

0
γ2(x, t)dt. (29)

with the radius of the region M(x) set equal to 3 nmi.

This map reveals that there are two main regions with some significant percentage of
occupancy (larger than 10%): one in the upper left-hand-side, and the other close to
the center of the airspace area S.

Ξ2(x) = 0 means that there will be at most a single aircraft within the ball of radius 3
nmi centered at x during the whole interval [0, t̄]. Aircraft passing through x such that
Ξ2(x) > 0 will be possibly involved in a conflict and the likelihood of this event grows
with Ξ2(x). If Ξ2(x) = 1, in particular, there will be more than 2 aircraft within the
ball of radius 3 nmi centered at x during the whole interval [0, t̄].

Figure 7: Complexity map Ξ2 : S → [0, 1] obtained for ρsafe = 3 nmi.

The earliest conflict time for both the two aircraft in the upper left-hand-side of the
airspace area S is t?B = 2 min. Indeed, the snapshot of the resolution maneuvers taken
at time t = 2 min shows that this is the earliest time that a significant deviation action
is taken by the decentralized solver and that it involves the two aircraft in the upper
left-hand-side (Figure 8).

In this example, the complexity map Ξ2 has been evaluated at uniformly sampled grid
points x ∈ S = [0, 120] × [0, 120] with a grid size δx1 = δx2 = 1. In the numerical
evaluation of the integral over [0, t̄] involved in (29), [0, t̄] has been uniformly sampled
with δt = 1. The short term look-ahead time horizon ∆ has been set equal to 2 min,
and the spectral densities σAi

1 = 0.25 nmi · (min)−1/2 in the along track direction, and
σAi

2 = 0.2 nmi · (min)−1/2 in the cross track directions.
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Figure 8: Snapshot of the resolution maneuvers for the 6 aircraft system in Figure 6
at time t = 2 min.

3D numerical examples In all the examples to follow, the parameters rh and rv

defining the ellipsoidal buffer region M(x) in (6) are set equal to rh = 5 nmi and rv =
2000 feet (0.3291 nmi), and the look-ahead time horizon is T = [0, 10] min. The zero-th
order approximation formula (24) is used when computing the complexity measures by
(27) and (28).

Evaluating the airspace occupancy:

Consider a 3-D airspace region with six aircraft. Each aircraft is moving at constant
velocity along a straight line during the time interval T . The nominal trajectories of
the aircraft are shown in Figure 9. Figure 10(a) shows the first order probabilistic
occupancy map Γ1(·, t) for five different consecutive time frames [t, t + ∆] of length
∆ = 2 min, covering the whole time horizon T . The uncertainty affecting the aircraft
future positions is characterized through the spectral densities σAi

1 = 0.5 nmi·(min)−1/2

in the along track direction, and σAi
2 = σAi

3 = 0.2 nmi · (min)−1/2 in the cross track
directions. For each time frame, the complexity map is evaluated at uniformly sampled
points in the horizontal plane XY with an uniform gridding of size δx = δy = 0.2 nmi.
Similarly, the probabilistic occupancy maps Γ2(·, t), t = 0, 2, 4, 6, 8, are plotted in
Figure 10(b).

Figure 10(a) shows that the first order probabilistic occupancy is high initially in those
zones that the aircraft are most likely to occupy in the XY plane. However, it can
be seen from the second order probabilistic occupancy map that no two aircraft come
close to each other in the first two time frames. During the time frame [4, 6], there is a
zone of high Γ1 and Γ2 complexity in the airspace. From the Γ2 map, we can deduce
that there will be more than one aircraft during this interval in that zone. This is to be
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Figure 9: Initial positions and nominal trajectories of the aircraft. ’*’ denote starting
points, and ’o’ denote the nominal position of the aircraft at time t= 10 min.

expected considering that the nominal trajectories take the aircraft close to each other
around this time. Also, the drastic decrease in the Γ1 complexity map in successive
subintervals indicates that the aircraft then move away from each other. Additional
traffic entering the airspace should then better avoid crossing the XY plane in the time
frame [2, 4].

Evaluation of the maneuverability space: Suppose that an additional aircraft
B is introduced at time t = 0 at the point [8, 8,−2]T nmi in the airspace where the
six aircraft are flying. Aircraft B is following a straight line trajectory at the constant
velocity uB = [2, 2, 2]T nmi/min. Due to the presence of the six aircraft, aircraft B is
not free to change its heading arbitrarily during the flight. In Figure 11 we represent the
complexity γB(t) defined in (10) as a function of the heading of aircraft B over a time
frame of length ∆ = 1 minute at a few sampled-points along the nominal trajectory
of aircraft B, when σAi

1 = 0.5 nmi · (min)−1/2 and σAi
2 = σAi

3 = 0.2 nmi · (min)−1/2.
It can be observed that aircraft B faces a decrease in the amount of low-complexity
prospective headings at some of these points, indicating that the airspace surrounding
them is congested. This information might be used by aircraft B to find a minimal-
complexity trajectory through the airspace.

If the spectral density increases to σAi
1 = 1 nmi · (min)−1/2 and σAi

2 = σAi
3 = 0.4 nmi ·

(min)−1/2, then, the maneuverability space reduces due to the wider spread of uncer-
tainty in the future aircraft position. This can be seen by comparing Figure 12 with
the plot in the second row, left side, of Figure 11. By tuning the spectral density
parameters, one can then affect the level of flexibility of the designed trajectory.
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(a) Γ1 probabilistic occupancy maps

(b) Γ2 probabilistic occupancy maps

Figure 10: Probabilistic occupancy maps over the XY plane corresponding to different
time frames [ts, tf ] of length 2 min in the time horizon [0, 10] min.
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Figure 11: Complexity experienced by aircraft B entering an airspace region with other
six aircraft as a function of its heading at a few points along its straight line trajectory.

Figure 12: Complexity experienced by aircraft B as a function of its heading within
the time frame [3,4] minutes when σAi

1 = 1 nmi · (min)−1/2 and σAi
2 = σAi

3 = 0.4 nmi ·
(min)−1/2.

Trajectory design:

Suppose that an aircraft B has to enter the airspace region S at time 0 and reach some
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destination position at time t̄. The intended trajectory of the aircraft is a straight
line traveled at constant velocity between its entry point and destination. However,
this trajectory is not guaranteed to be of low-complexity due to the presence of other
aircraft. Aircraft B can then choose a fixed number m of velocity changes at specified
points in time 0 < t1 < t2 < . . . < tm < tf to reduce the complexity along its trajectory.

Note that the way points X1, X2, . . . , Xm at which aircraft B changes its velocity
completely specify its nominal multi-legged trajectory. Since the flight time between
successive way points is given, the velocity of aircraft B within each interval can be
determined from the way points X1, X2, . . . , Xm and the starting and destination po-
sitions.

We seek to find an optimal trajectory in the sense that both the deviation from the
intended trajectory and the complexity γB(0) experienced by aircraft B within the
flight time [0, t̄] (∆ = t̄) are minimized. We take the sum of the distances of the way
points X1, X2, . . . , Xm from the intended trajectory as measure of the deviation d.

The complexity experienced by aircraft B along a multi-legged trajectory is not easy to
compute since aircraft B does not have a constant velocity through out its flight, but
only keeps its velocity constant during each interval [ti, ti+1], i = 0, 1, . . . ,m. However,
we can over-approximate it by the sum of the complexities evaluated along the time
intervals [ti, ti+1] where aircraft B is flying at constant velocity vi from Xi to Xi+1 as
suggested in Section 5.1.4 when dealing with the multi-legged nominal trajectory case.

The problem of finding a suitable trajectory is then formulated as that of minimizing
the cost:

J := d + λγ̂B(0), (30)

which is a weighted sum of the deviation measure d and the over-approximation of the
complexity measure γ̂B(0). A higher value of the weighting coefficient λ > 0 attributes
a greater priority to the low-complexity requirement, and results in a less conflict-prone
trajectory for appropriately chosen size of the buffer zone.

In Figure 13, an encounter situation is shown, where some aircraft B enters an airspace
region at time 0 and aims at reaching a destination position at time t̄ = 10, while
keeping at some constant altitude. Four aircraft are already present in that region.
Assume that aircraft B follows a level flight trajectory with one possible velocity change
(m = 1) at t1 = 5 out of a total flight time t̄ = 10.

Figure 13 shows the optimal trajectory of aircraft B obtained by minimizing the cost
function (30) with λ = 1500, when σAi

1 = 0.25 nmi · (min)−1/2 and σAi
2 = σAi

3 =
0.2 nmi · (min)−1/2. The minimization was done using the MATLAB function fmincon
and with the intended straight trajectory as the initial guess for the solution. The
color map in Figure 13 represents the sum of the complexity measures within the time
intervals [0, 5] and [5, 10] evaluated for different choices of the intermediate way point.
The original intended trajectory is also plotted for comparison. It can be observed
that the sum of the complexity measures along this trajectory is greater than that
of the optimal one. A larger value of λ places more emphasis on the low-complexity
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Figure 13: Originally intended trajectory (solid line) and optimal trajectory (dashed
line) of aircraft B flying from the starting position on the left to the destination position
on the right (λ = 1500). The color map in the background represents the complexity
along aircraft B trajectory as a function of the intermediate way point position.

requirement and thus leads to more aggressive maneuvering.

5.2 A geometric approach to complexity evaluation

5.2.1 Introduction

In this section, we describe a complexity metric which could be used for the strategic
trajectory management operations within the A3 ConOps, as described in Chapter 2.

The metric was introduced in [9] and is built upon a simple idea: complexity at position
x and time t depends on whether it would be convenient for an aircraft to be at that
specific position x in that specific time t or not. The complexity metric should quantify
how likely it is that the aircraft will be forced to tactically maneuver at that point,
and, as such, it is a local measure.

5.2.2 Definition of local complexity

The local complexity at a point C takes into account all the aircraft inside a rotational
ellipsoid E(C) centered at C and with axis of rotation in vertical direction, whereas
the contributions of aircraft outside the ellipsoid E(C) are neglected.

More precisely, the value M(C, t) of the complexity metric at point C and time t is
defined as the sum of the contributions mi’s of all aircraft i whose intended position
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Ai(t) at time t lies inside the ellipsoid E(C):

M(C, t) =
∑

{i:Ai(t)∈E(C)}
mi(C, t) (31)

In turn, mi(C, t) is determined by the intended position and the actual direction of
flight (track angle, inertial flight path angle) of aircraft i at time t, as follows:

mi(C, t) = log2

(
1 +

|AiPi|
|CPi|

1

1 + ek(
αi
π
−0.5)

)
(32)

where point Pi is given by the intersection of semi-axis CAi with the boundary of the
ellipsoid E(C) and αi is the angle between the actual direction of flight and vector AiC

(see Figure 14). Dependence of Ai, Pi and αi from t is omitted for brevity.

The angle αi is measured in radians and takes values in [0, π] (αi = 0 means that the
aircraft is heading towards C, and αi = π that it is moving away from C).

Figure 14: Metric definition scheme.

In formula (32), the distance-based component |AiPi|
|CPi| aims at emphasizing the influence

of the aircraft that are closer to the ellipsoid center C, while the angle-based component
1

1+ek(
αi
π −0.5)

takes into account the extent to which the aircraft is heading towards the

point C. The direction of the flight is considered in a nonlinear way using the classic
sigmoidal function. The range of both the distance-based and angle-based component,
as well as of the single aircraft contribution to the local complexity, is [0, 1].

Also, the local complexity metric possesses the following properties:

• the contribution of an aircraft to the complexity is continuous as a function of
the space; and

• the metric is additive with respect to contributing aircraft.

Due to these two properties, the measure is relatively robust to possible local deviations
of the aircraft from their predicted trajectory.

5.2.3 Complexity maps

4D complexity maps can be generated based on the proposed local measure of com-
plexity in a given airspace region. To this purpose the metric is computed on a regular
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spatial grid, using snapshots of (predicted) traffic throughout time at regular sampled
times.

To the purpose of obtaining a compact representation of the 4D complexity maps,
their sampled version on a rectangular grid is filtered using a threshold (or multiple
thresholds, if desired). A segmentation algorithm is then applied so that it is clear how
many components (that is, 4D areas of complexity) are present. Each component is
then simplified as much as possible, so that clearly defined objects are obtained. This
process shall reflect the requirements of the applications: for computation of the optimal
trajectories, communication, displaying to a pilot/controller, etc., it is necessary that
the areas are easily represented. Components that are too small can be omitted; those
that are close to each other can be merged; those with “holes” inside can be filled; those
that are complicated to describe can for example be over-approximated by a convex
set.

A lateral view of the 3D spatial complexity map of one aircraft is shown in Figure 15.
It illustrates well the contribution of the direction of the flight to the local complexity
and the related added value with respect to the simple traffic density calculation, which
does not account for the aircraft directivity and velocity, and, hence, does not take into
consideration any geometrical factor related to the air traffic evolution.

Figure 15: Complexity map due to a single aircraft (lateral view).

As in the probabilistic approach, the computation effort involved in complexity eval-
uation at each grid point scales linearly with the number of aircraft. Indeed, when
building the complexity map, one does not have to explicitly evaluate the interactions
between aircraft (such as converging or diverging tendencies), which will eventually
cause an exponential growth of the effort. Nevertheless, such an interaction is still
inherently present: if two aircraft are converging, there is certainly a point in the grid
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close to both of them and in the direction of their flight, which will take high com-
plexity values. In the same vein, diverging aircraft will not contribute together to high
complexity values in any grid point.

Example 1 (complexity maps) Figure 16 to Figure 19 show the evolution of a com-
plexity of an air traffic situation at times 300 seconds, 600 seconds, 900 seconds and
1200 seconds after the “ownship” left from the position [0,0]. This example uses a
random traffic with approximately 50 aircraft with two mild crossing flows.

Figure 16: Complexity map of an air traffic example - time 300 s.

The angle-based component of the metric can be shaped through the parameter k.
In this example, we adopted the value k = 12. For the horizontal semi-axis of the
ellipsoid E(C), the value 40 nmi (about 5 minutes of the en-route flight) was used. For
the vertical semi-axis of the ellipsoid E(C) the value of 10 000 ft was considered (10
Flight Levels).

The spatial gridding was 5 nmi on the horizontal plane and 1600 ft vertically, whereas
a sampling time period of 60 seconds was adopted.

The optimal choice of numerical parameters is of course tightly connected to the realistic
parameters of the air traffic system and detailed operational requirements. So the values
used in the example are based on an initial estimation and first simple validation.

5.2.4 Setting the thresholds to identify complex areas-to-avoid

The complexity map itself provides only relative information about the air traffic com-
plexity: it shows areas with higher or lower complexity, but does not tell anything about
feasibility (in terms of flying through) of these places. In other words, we need thresh-
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Figure 17: Complexity map of an air traffic example - time 600 s.

Figure 18: Complexity map of an air traffic example - time 900 s.

old value(s) that would help us distinguish between areas which should be avoided and
areas suitable for flight (from air traffic perspective).

For a distributed trajectory optimization we propose application of two thresholds: a
hard threshold and a soft threshold (see an example in Figure 20). Their intended use
is as follows: The hard limit is the complexity value that should not be exceeded. The
soft limit is the hard limit decreased by 1. It can be ignored during an assessment of
a planned path, however should be taken into account if re-planning takes place. Note
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Figure 19: Complexity map of an air traffic example - time 1200 s.

that the complexity is computed based on all the aircraft involved. So if a pilot of one
such aircraft finds out that his/her plane (ownship) is going to fly through a complexity
area given by the soft limit, but not through an area given by the hard limit, he/she
can expect that the complexity will not exceed the hard limit. On the other hand if
a new trajectory is designed (for example, a bypass around an area given by the hard
limit), the new path should avoid the soft limit borders as well.

Figure 20: Complexity map of an air traffic example - time 300 s. Soft threshold (value
3) and hard threshold (value 4) are applied.
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The reason is that the complexity far from the original flight path was computed
with little or no contribution from the ownship, but after a flight path change, the
contribution of the ownship would be equal to one exactly on the new path, and close
to this number in the near neighborhood. So, if the new flight path is planned in the
areas with complexity less than the soft limit, it is certain that after that change the
complexity there will not exceed the hard limit.

The right value of the hard threshold may depend mainly on the character, requirements
and expectations of each user, and should be a result of deep analysis. Here we only
provide a glimpse into the complexity values meaning through some experiment. We
simulated one thousand instances of a random traffic (with two main crossing flows of
traffic of moderate intensity) at a square of 130 nmi x 130 nmi. The traffic was not
de-conflicted in advance by any strategic flow management, and conflicts occurred now
and then. For a selected ownship travelling through the area, the ratio of discrete time
instances with a conflict (loss of separation) to the total number of time instances, was
evaluated for each complexity interval of length 1. The results are shown in Figure 21.

Figure 21: Conflict ratio (vertical axis) vs. complexity range (horizontal axis).

The first complexity interval is empty. This is due to the fact that the ownship itself
increases the complexity value by one, as the complexity is measured exactly in the
ownship’s position in this experiment. All measured complexity values were lower than
11, so the last column is also empty. The penultimate column represents only one
case: a time instance when the ownship has conflicts with 4 other aircraft at once, but
generally this is also a rare situation. The rest of the columns, however, can tell a little
about the relation between the complexity measure and conflicts experienced at the
same time: For example, if we want the probability of conflicts to be around 0.5, the
aircraft should avoid areas with complexity higher than 3 or 4 (see the fourth most left
column). Nevertheless, finer complexity categorization would be necessary in order to
find the right balance between conflicts and complexity areas size (usually, the lower
complexity threshold, the larger the area determined by the threshold value).
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5.2.5 Map representation for onboard trajectory management

Figure 22: A subjective view on the traffic complexity from the single aircraft perspec-
tive. The intended flight path goes through a hard threshold area, therefore re-planning
is needed.

Figure 23: New trajectory (dashed line) avoiding the complex areas.

In the previous part, we have already outlined how thresholds can be set and used for
the trajectory optimization application. In the case of an onboard application only the
resulting 4D complexity areas are sent to the aircraft. Still there can be many of them,
and their predicted evolution in time can be rather complicated (see the example in the
previous section). Note, however, that the only relevant information for the crew or the
onboard trajectory planning system is that related to those times and positions that can
be actually reached by the aircraft. For instance, complexity values at positions that
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are far from the current aircraft position are not of interest. Thus it would be waste
of communication effort to transmit and process such information. Instead, according
to the expected speed profile of the aircraft, only a 2D cross section (the complexity
at different grid points is evaluated for the time when this point could be reached by
own aircraft) through the 4D grid can be used, providing the subjective view of the
expected complexity evolution to be experienced by the aircraft. Such a subjective
2D view for the ownship from our example (see Figure 16 to Figure 19) is shown in
Figure 22. The main axis shows the intended flight path of the ownship. Note that the
subjective view not only reveals all the details of the evolution of complexity from the
ownship’s subjective perspective, but - if generated without the ownship’s contribution
(see Figure 23) - also helps to decide which way to go around an area of high complexity.

5.3 Comparative analysis

In this section we perform a comparative analysis of the two novel methods for com-
plexity evaluation described in this chapter, in view of the airborne self separation
application.

5.3.1 Features relevant to the airborne self separation application

The probabilistic and geometric approaches to complexity evaluation described in Sec-
tions 5.1 and 5.2 have the the following characteristics:

1. they are control-independent, in that complexity is evaluated without making
reference to the way the traffic is controlled and only based on the aircraft (pre-
dicted) trajectories;

2. they account for the aircraft density and the traffic dynamics;

3. they can be applied to assess complexity on either a mid term or a long term
horizon, depending on the look-ahead time horizon of the predicted trajectory;

4. they can provide a 4D map of complexity, based on which high complexity areas-
to-avoid can be identified;

5. the contribution of each single aircraft to complexity can be computed in isolation
and then combined with that of the other aircraft.

A key difference is that uncertainty in the future aircraft position is accounted for when
evaluating complexity according to the probabilistic approach, whereas the geometric
approach relies on the nominal aircraft trajectory for complexity evaluation.

Table 2 summarizes the characteristics of the two methods with reference to the features
that were identified as relevant to airborne self separation in Section 2.3. Both methods
satisfy the desired properties, the only issue being the high computational load and
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memory requirements involved in the construction and update of the 4D maps, which
is only partly alleviated by the feature described at point 5.

According to the A3 ConOps described in A3 ConOps described in Deliverable 1.3, [13],
complexity maps for trajectory management purposes will be computed on the ground,
where higher computational power is available, and only relevant information in terms
of areas-to-avoid will be transmitted onboard. Nevertheless, parallelized implementa-
tions and some adaptive gridding scheme using a finer gridding of the airspace in those
regions that are close to the aircraft nominal trajectories can be adopted to reduce the
computational requirements.

In the probabilistic approach to complexity evaluation, a single-aircraft complexity met-
ric is also introduced. Whereas the construction of the global complexity map involves
4D (time and 3D space) gridding, computations of the single-aircraft complexity metric
are confined to the aircraft nominal path and involve only one-dimensional gridding.
As such they are better suited for onboard implementation.

5.3.2 Capability of detecting traffic configurations that are difficult to con-
trol

We now assess the performance of the two methods for in terms of capability of the
corresponding metrics of identifying those air traffic configurations that are difficult to
control. More specifically, we analyze the correlation between collision risk and a scalar
measure of complexity in a scenario where control is delegated to the aircraft.

The study was conducted jointly with WP7 of the iFly project. Within WP7, complex-
ity measures could be used to identify the air traffic configurations that are more likely
to lead to a collision in order to speed-up the IPS method for estimating the collision
risk in a self separating aircraft scenario, [7].

The standard Monte Carlo approach to probability estimation requires a number of
simulations that scales as the inverse of the probability to be estimated. This makes it
impracticable for estimating the probability of a rare event such as a collision, and calls
for ad-hoc solutions. In the IPS method, the number of simulations to estimate the
collision risk is significantly reduced by representing the collision risk as the product
of the conditional probabilities of an increasing sequence of conditionally not-so-rare
events. In this sequence, the aircraft get at progressively smaller distances one from
the other, reaching nested levels of proximity. Each of these conditional probabilities,
e.g., the probability of reaching level k + 1 given that level k has been reached, is
estimated by simulating in parallel several copies of the system. Each copy represents
a particle and evolves according to the system dynamics. Re-initialization is performed
at every level k by re-sampling the particles according to the empirical distribution as
determined by the particles that have reached such a level.

Although the IPS approach to collision risk estimation outperforms the standard Monte
Carlo approach, it still poses very high requirements on the availability of dynamic com-
puter memory and simulation time. The idea jointly developed with WP7 is to improve
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the performance of the IPS algorithm by selecting among the initial aircraft configu-
rations those that are more prone to lead to a collision and propagating through the
system dynamics only the corresponding particles. These configurations are identified
based on the value taken by some complexity metric. This idea is inspired by the
variance reduction technique known in the Monte Carlo simulation literature as impor-
tance sampling, where samples are extracted according to a “biased” distribution that
is higher in those regions making the most important contribution to the quantity to
be estimated, and the outcome of the simulations is then re-scaled to get an unbiased
estimate. More details on the resulting integrated approach are reported in [61].

We run our test on a Stochastically and Dynamically Coloured Petri Net (SDCPN)
simulator of the AMFF [53], which was developed to study the introduction of au-
tonomous free flight operation in Mediterranean airspace. The SDCPN model is com-
posed of interconnected Local Petri Nets modelling each agent involved in the process
(e.g., aircraft, pilot, navigation and surveillance equipment) and is described in details
in [7].

The IPS algorithm was applied to an hypothetical AMFF air traffic scenario where one
aircraft is flying through a virtual infinite airspace of randomly distributed aircraft.
The traffic density was set equal to 2.5 times the density of 0.0032 aircraft per nmi3

experienced on 23rd July 1999 in an en-route busy area near Frankfurt. To reproduce
such a density, the airspace was divided into packed containers, each one having a
length of 40 nmi, a width of 40 nmi, and a height of 3900 feet and containing 8 aircraft.
The virtually infinite airspace is build according to the following procedure. A set of
8 aircraft (i = 1, 2, . . . , 8) flying at arbitrary position and in arbitrary direction at a
ground speed of about 466 nmi/h is generated first in a container. Duplicates of this
container are then piled on top and next to each other (9 containers in the x and y-
directions and 11 in z-direction). Note that, since the aircraft within each container
behave the same, in principle an aircraft can experience a conflict with its own copy in
a neighboring container.

The aim is to estimate the probability of collision of aircraft i = 1 in the central
container with any of the other aircraft per unit time of flying. By running the IPS
algorithm ten times over 15 minutes the collision probability per unit time of flying can
be estimated. The number of initial particles per IPS simulation run is 10000, each
one corresponding to an aircraft initial configuration. 8 nested levels of proximity are
considered as detailed in [7]. The initial aircraft configurations that are more prone to
a collision are those with a larger number of regenerated samples hitting level 8. The
results obtained by applying the standard IPS method are reported in Table 3.

The capability of a method for complexity evaluation to detect critical encounter config-
urations can be assesses by evaluating the speed-up factor achieved in the IPS algorithm
by selecting the particles to be propagated through the system dynamics based on the
corresponding complexity value.

We start by illustrating the results obtained with the approach to complexity evaluation
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Table 3: Results obtained through the standard IPS.
run risk estimate

1 7.28 · 10−5

2 8.83 · 10−5

3 3.54 · 10−5

4 1.03 · 10−4

5 1.22 · 10−5

6 7.21 · 10−5

7 2.66 · 10−6

8 3.94 · 10−5

9 1.41 · 10−4

10 8.03 · 10−6

mean 5.75 · 10−5

presented in Section 5.1.

Performance of the probabilistic approach to complexity evaluation

The single-aircraft complexity measure γB(0) defined in (10) with ∆ = 15 minutes was
used with aircraft B representing the aircraft in the central box for which collision risk
is estimated.
The spectral densities of the uncertainty affecting the future aircraft position were set
equal to σAi

1 = 0.25 nmi · (min)−1/2 in the along track direction, and σAi
2 = σAi

3 =
0.2 nmi · (min)−1/2 in the cross track directions. The parameters rh and rv defining the
ellipsoidal buffer region surrounding aircraft B were set equal to rh = rv = 0.05 nmi
to reproduce a condition of collision.

The value taken by γB(0) is used to decide whether some given airspace configuration
has to be propagated through the system dynamics in the IPS algorithm or not. In the
former case we call the configuration a selected particle.

Figure 24 refers to run number 1 and plots the diagram of the probability that γB(0)
exceeds some threshold as a function of the threshold value. Similar plots can be
obtained for the other runs. Additional information is provided by the histograms of
γB(0) for the particles hitting the conflict levels from 1 to 8 (see the plots in Figure 25
for run 1).

In the IPS algorithm with importance sampling, the initial particles for which γB(0) is
lower that some threshold are discarded and the IPS algorithm is run on the selected
particles only. The impact of this procedure in terms of reduction of the number of
particles to simulate and degradation of the IPS collision risk estimate can be evaluated
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Figure 24: Diagram of the probability that γB(0) exceeds the threshold as a function
of the threshold value (run number 1).

in each run through the following quantity

gain :=
original number of particles
number of selected particles

risk estimate with all particles
risk estimate with the selected particles

.

The overall gain over the 10 runs of the IPS algorithm can be computed through the
same formula applied to average quantities.

Increasing values of the threshold (0.010, 0.015, 0.020, 0.025, 0.030 and 0.035) have
been considered in our experiments (see Tables 4-9).

Obviously, as the threshold increases, the number of selected particles decreases. This
has the beneficial effect of reducing the computational effort in the IPS algorithm, but
may lead to an excessive impoverishment of the set of initial particles and cause the
collision risk estimate to be zero (i.e., no particle reaches the final level 8). In view of
this consideration, the threshold value 0.03 (and, hence, also 0.035) can be considered
too large since the collision risk estimate is zero in more than 50% of the runs. The
speed-up factor for the threshold values smaller than 0.03 can be estimated by re-scaling
the overall gain factor with the fraction of runs that correspond to a nonzero estimated
risk. The larger speed-up factor turns out to be 15.30 and corresponds to the threshold
value 0.025.
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Table 4: Results obtained with γB(0) when the threshold is set equal to 0.010.
run selected particles estimate gain

1 3317 5.84 · 10−5 2.4
2 3269 6.38 · 10−5 2.2
3 3235 1.20 · 10−5 1.0
4 3246 9.24 · 10−5 2.8
5 3271 5.90 · 10−7 0.1
6 3265 1.39 · 10−5 0.6
7 3215 0.0 0.0
8 3186 9.79 · 10−6 0.8
9 3256 1.24 · 10−4 2.7
10 3201 2.33 · 10−7 0.1
mean 3246 3.75 · 10−5 1.3

overall gain: (10000/3246)/(5.75 · 10−5/3.75 · 10−5) = 2.0

Table 5: Results obtained with γB(0) when the threshold is set equal to 0.015.
run selected particles estimate gain

1 1177 4.11 · 10−5 4.8
2 1157 3.40 · 10−5 3.3
3 1135 1.20 · 10−5 3.0
4 1136 9.24 · 10−5 7.9
5 1092 5.90 · 10−7 0.4
6 1139 1.01 · 10−5 1.2
7 1087 0.0 0.0
8 1093 9.79 · 10−6 2.3
9 1127 7.73 · 10−5 4.9
10 1121 0.0 0.0
mean 1126 2.77 · 10−5 2.8

overall gain: (10000/1126)/(5.75 · 10−5/2.77 · 10−5) = 4.3
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Table 6: Results obtained with γB(0) when the threshold is set equal to 0.020.
run selected particles estimate gain

1 398 7.46 · 10−8 0.0
2 415 3.40 · 10−5 9.3
3 385 1.20 · 10−5 8.8
4 368 9.20 · 10−5 24.3
5 347 5.90 · 10−7 1.4
6 392 0.0 0.0
7 358 0.0 0.0
8 377 0.0 0.0
9 386 7.73 · 10−5 14.2
10 382 0.0 0.0
mean 381 2.16 · 10−5 5.8

overall gain: (10000/381)/(5.75 · 10−5/2.16 · 10−5) = 9.9

Table 7: Results obtained with γB(0) when the threshold is set equal to 0.025.
run selected particles estimate gain

1 146 7.46 · 10−8 0.1
2 147 3.39 · 10−5 26.1
3 142 2.45 · 10−6 4.9
4 143 9.20 · 10−5 62.6
5 133 5.90 · 10−7 3.6
6 133 0.0 0.0
7 142 0.0 0.0
8 134 0.0 0.0
9 146 7.73 · 10−5 37.6
10 143 0.0 0.0
mean 141 2.06 · 10−5 13.5

overall gain: (10000/141)/(5.75 · 10−5/2.06 · 10−5) = 25.5
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Table 8: Results obtained with γB(0) when the threshold is set equal to 0.030.
run selected particles estimate gain

1 65 7.46 · 10−8 0.2
2 56 3.39 · 10−5 68.5
3 54 2.45 · 10−6 12.8
4 50 9.20 · 10−5 179.1
5 44 0.0 0.0
6 57 0.0 0.0
7 46 0.0 0.0
8 55 0.0 0.0
9 72 0.0 0.0
10 48 0.0 0.0
mean 55 1.28 · 10−5 26.1

overall gain: (10000/48)/(5.75 · 10−5/1.28 · 10−5) = 40.9

Table 9: Results obtained with γB(0) when the threshold is set equal to 0.035.
run selected particles estimate gain

1 21 7.46 · 10−8 0.5
2 19 0.0 0.0
3 24 2.45 · 10−6 28.8
4 23 9.20 · 10−5 389.4
5 17 0.0 0.0
6 26 0.0 0.0
7 18 0.0 0.0
8 16 0.0 0.0
9 26 0.0 0.0
10 14 0.0 0.0
mean 20 9.45 · 10−6 41.9

overall gain: (10000/20)/(5.75 · 10−5/9.45 · 10−6) = 81
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Figure 25: Histograms of γB(0) for the particles hitting the conflict levels from 1 to 8
(run number 1).

Performance of the geometric approach to complexity evaluation

The complexity metric (31) is computed along the nominal trajectory of the aircraft in
the central box, say xB(t), for which collision risk is estimated. Complexity is evaluated
every ∆ = 10 seconds and the largest value along the 15 minutes time horizon

Mmax := max
k∈{0,1,...,15·6}

M(xB(k∆), k∆)
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Figure 26: Diagram of the probability that complexity Mmax exceeds the threshold as
a function of the threshold value (run number 1).

is used to identify the particles to be propagated in the IPS algorithm with importance
sampling.

The semi-axes of the ellipsoid entering the complexity measure (31) are set equal to
100 km in the horizontal plane and to 3 km in the vertical direction, whereas k = 12.

Figure 26 refers to run number 1 and plots the diagram of the probability that Mmax

exceeds some threshold as a function of the threshold value. Similar plots can be
obtained for the other runs. Additional information is provided by the histograms of
Mmax for the particles hitting the conflict levels from 1 to 8 (see the plots in Figure 27
for run 1).

Increasing values of the threshold (26.00, 26.25, 26.50, and 26.75) have been considered
in our experiments. Results are reported in Tables 10-13.

In this case, threshold values larger than 26.25 can be considered too large since the
collision risk estimate is zero in more than 50% of the runs. The speed-up factor for
the threshold values 26.00 and 26.25 can be estimated by re-scaling the overall gain
factor with the fraction of runs that correspond to a nonzero estimated risk. The larger
speed-up factor is 1.05 and corresponds to the threshold value 26.00.
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Table 10: Results obtained with Mmax when the threshold is set equal to 26.00.
run selected particles estimate gain

1 2953 7.28 · 10−5 2.7
2 2920 2.29 · 10−6 0.1
3 2903 1.11 · 10−5 1.1
4 3080 9.22 · 10−5 2.9
5 2992 0 0.0
6 2982 1.01 · 10−5 0.5
7 2969 0 0.0
8 2959 0 0.0
9 2907 7.77 · 10−5 1.9
10 2976 4.82 · 10−6 2.0
mean 2964 2.57 · 10−5 1.1

mean gain: (10000/2964)/(5.75 · 10−5/2.57 · 10−5) = 1.5

Table 11: Results obtained with Mmax when the threshold is set equal to 26.25.
run selected particles estimate gain

1 1530 5.74 · 10−5 5.2
2 1556 2.29 · 10−6 0.2
3 1496 9.37 · 10−6 1.8
4 1637 9.22 · 10−5 5.5
5 1555 0 0.0
6 1557 3.94 · 10−6 0.4
7 1554 0 0.0
8 1541 0 0.0
9 1498 3.89 · 10−7 0.0
10 1545 0 0.0
mean 1547 1.66 · 10−5 1.3

overall gain: (10000/1547)/(5.75 · 10−5/1.66 · 10−5) = 1.3
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Table 12: Results obtained with Mmax when the threshold is set equal to 26.50.
run selected particles estimate gain

1 795 5.74 · 10−5 9.9
2 784 2.29 · 10−6 0.3
3 726 0 0.0
4 793 9.22 · 10−5 11.3
5 765 0 0.0
6 785 9.62 · 10−8 0.0
7 791 0.0 0.0
8 789 0 0.0
9 760 0 0.0
10 754 0 0.0
mean 774 1.52 · 10−5 2.2

overall gain: (10000/774)/(5.75 · 10−5/1.52 · 10−5) = 3.5

Table 13: Results obtained with Mmax when the threshold is set equal to 26.75.
run selected particles estimate gain

1 376 0 0.0
2 374 0 0.0
3 343 0 0.0
4 380 9.20 · 10−5 23.6.6
5 365 0 0.0
6 406 9.62 · 10−8 0.0
7 379 0 0.0
8 381 0 0.0
9 374 0 0.0
10 334 0 0.0
mean 371 9.21 · 10−6 2.4

overall gain: (10000/371)/(5.75 · 10−5/0.92 · 10−5) = 4.3
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Figure 27: Histograms of complexity Mmax for the particles hitting the conflict levels
from 1 to 8 (run number 1).

Final outcome of the experiments

The speed-up factor obtained with the probabilistic approach in Section 5.1 was found
to be one order of magnitude larger than that obtained with the geometric approach in
Section 5.2. This means that the probabilistic complexity measure is more correlated
with the collision risk than the geometric measure, and, as a consequence, it is more
suitable for detecting those air traffic configurations that are difficult to control. A
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possible reason for this result is that the probabilistic complexity metric proposed in
Section 5.1 strictly relates to the probability of conflict. Also, the geometric complexity
metric proposed in Section 5.2 accounts for the flight speeds only indirectly, through the
projected aircraft positions, which makes it difficult discriminating between collision
and no collision situations.
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6 Concluding remarks

In this final chapter we summarize the achievements realized within WP3.2, discuss
their possible impact on the A3 ConOps, and outline follow-up questions that calls for
further investigation.

The approaches for complexity evaluation available in the literature were examined
based on the features of a complexity metric that were found to be relevant to auto-
mated airborne self separation. A method that appeared portable to the A3 ConOps
was identified. A thorough analysis of this method led to the conclusion that some of
its features hamper its applicability to the intended A3 ConOps applications support-
ing strategic trajectory management and mid term conflict detection and resolution
operations.

A probabilistic and a geometric approach to complexity evaluation were developed to
better meet the challenges posed by the A3 ConOps applications. Both approaches
satisfy the feature relevant to airborne self separation. They both provide local mea-
sures of complexity that depend on the aircraft density and the traffic evolution, and
not on the way the traffic is controlled. A key difference is that, whereas in the proba-
bilistic approach the uncertainty affecting the aircraft predicted position is accounted
for, in the geometric approach complexity is determined based on the nominal aircraft
trajectories and neglecting uncertainty.

Since the goal of the geometric approach to complexity is to assess whether or not
it would be convenient (from a tactical maneuvering perspective) for an aircraft to
be at a specific position in a specific time, the corresponding metric is suitable for
the A3 ConOps application to trajectory management and, more specifically, for the
identification of those complex areas that should better avoided in order to reduce the
need for excessive tactical maneuvering.

Through a correlation analysis with collision risk, the probabilistic method was found
to be better suited for supporting the ASAS mid term conflict detection and resolution
operations by predicting those air traffic configurations that are difficult to control and
may overload the ASAS CR module.

The two approaches could then be combined as follows. The geometric approach could
be used to determine the complex areas-to-avoid, based on the aircraft RBTs avail-
able through SWIM. Areas-to-avoid will be computed on the ground and distributed
onboard to support trajectory management operations. Complexity maps will be up-
dated from time to time to take care of possible modifications of the aircraft RBTs.
Unexpected deviations on a finer time scale will be accounted for by the probabilistic
complexity metric tailored to a mid term time horizon. Appropriate joint tuning of de-
sign parameters and thresholds should be performed to optimize the overall complexity
prediction functions within the A3 ConOps.

Probabilistic complexity metrics could be used also for onboard trajectory design so
as to preserve trajectory flexibility while optimizing performance. Interestingly, the
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level of flexibility of the designed trajectory can be tuned by modifying the level of un-
certainty affecting the predicted aircraft future position. However, effective trajectory
design algorithms should be conceived. In addition, at the current stage of development,
the uncertainty affecting the aircraft future position is supposed to be uncorrelated,
which may be a quite restrictive assumption. The case of correlated uncertainty re-
quires investigation. Besides being more difficult from a modeling perspective since an
appropriate spatial correlation structure has to be introduced (see e.g. [32]), the con-
tribution to complexity of distinct aircraft will not be decoupled anymore but will have
to be jointly evaluated, at least for aircraft within a sensible distance, where correlation
is effective.

Apart from the weaknesses related to the individual approaches, some further weak-
nesses could emerge from the co-existence of the two methods. The analysis of this
issue, however, goes far beyond the work plan in WP3.2.
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[2] S. Athénes, P. Averty, S. Puechmorel, D. Delahaye, and C. Collet. Complexity
and controller workload: Trying to bridge the gap. In International Conference on
Human-Computer Interaction in Aeronautics, HCI-Aero, Cambridge (MA), USA,
2002.

[3] A. Berlinet and C. Thomas-Agnan. Reproducing kernel Hilbert spaces in probability
and statistic. Kluwer Academic Publisher, 2004.

[4] K. Bilimoria and M. Jastrzebski. Properties of aircraft clusters in the national
airspace system. In AIAA Aviation Technology, Integration and Operations Con-
ference, number AIAA 2006-7801, Wichita, Kansas, Sept. 2006.

[5] K. Bilimoria and H. Lee. Analysis of aircraft clusters to measure sector-
independent airspace congestion. In AIAA Aviation Technology, Integration and
Operations Conference, number AIAA 2005-7455, Arlington, VA, Sept. 2005.

[6] K.D. Bilimoria and M. Jastrzebski. Aircraft clustering based on airspace com-
plexity. 7th AIAA Aviation Technology, Integration and Operations Conference,
2007.

[7] Henk A.P. Blom, Jaroslav Krystul, G.J. (Bert) Bakker, Margriet B. Klompstra,
and Bart Klein Obbink. Free flight collision risk estimation by sequential MC
simulation. In C.G. Cassandras and J. Lygeros, editors, Stochastic hybrid systems,
Automation and Control Engineering Series 24, pages 249–282. Taylor & Francis
Group/CRC Press, 2007.
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