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Abstract

This is the final deliverable of the work package 5 of the project
iFly. The aim of WP5.4 is to perform an initial validation of the
conflict resolution methods that have been developed in the previous
sub work-packages of WP5. In order to assess the performance of the
algorithms in demanding multiple aircraft conflict situations, realistic
air traffic samples provided by Eurocontrol Experimental Centre have
been used.
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1 Introduction

1.1 iFly WP5

The objective of WP5 is to investigate and push the limits of conflict reso-
lution algorithms for the Autonomous Aircraft Advanced (A3) Concept of
Operations (ConOps) by WP1. This covers both the most advanced con-
flict resolution methods that have been already developed in the literature,
as well as novel approaches which have been identified by the HYBRIDGE
project as innovative and feasible for application to air traffic management
and are being further developed within WP5. The work in WP5 is struc-
tured in four sub-WPs:

• WP5.1: Comparative study of conflict resolution methods. Within
this sub-WP, a survey of different methods proposed for conflict resolu-
tion has already been carried out. Both centralized and decentralized
conflict resolution methods have been considered as starting points
towards a distributed Conflict Detection and Resolution (CD&R) ap-
proach. The emphasis has been on methods that provide proven per-
formance and can be applied in an autonomous fashion. The methods
have been analysed and compared in terms of their capabilities, lim-
itations and complementarities from a general autonomous aircraft
conflict resolution perspective. The findings of this sub-WP have been
documented in [5].

• WP5.2: Analysis of conflict resolution needs of A3 operation devel-
oped by WP1 and WP2. Within this sub-WP, the conflict resolution
requirements imposed by this concept, as well as the resources that
the concept can make available for conflict resolution tasks (in terms
of communication, computation, stakeholder roles, etc.) have been
identified. Furthermore, conflict resolution methods have been com-
pared versus these requirements and strengths and weaknesses of each
method have been identified. The findings of this sub-WP have been
documented in [11].

• WP5.3: Further development of conflict resolution methods. In or-
der to match the A3 ConOps requirements further development of the
conflict resolution methods is necessary. WP5.3 concentrated on devel-
oping those methods. Deliverable D5.3i [24] has already documented
the initial indications of the methods chosen to further develop within
the WP. The final deliverable D5.3 [6] documented the final results of
the work undertaken within this sub-WP.

• WP5.4: Validation of the resulting conflict resolution method against
the requirements. The aim of this sub-WP is to compare the resulting
conflict resolution methods against the best currently known by the
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autonomous aircraft research community and against the requirements
identified in WP5.2. The results of the validation are presented in this
deliverable.

The first three sub-WPs of WP5 have been focused on the identification
and developement of conflict avoidance algorithms for application in the
A3 ConOps of iFLY. Following the structure of the Separation Assurance
(SA) system described in the ConOps [7], the work there has been directed
towards Short and Mid-term CD&R levels, as defined using the time-to-
conflict criterion1.

For the Short-term level the Decentralised Navigation Functions (NFs)
framework has been chosen and significant developement and refinement has
been performed to derive a CD&R algorithm suitable for the needs of Air
Traffic Management (ATM) that maintains the powerful formal properties
of Navigation Functions (NFs). The specific performance constraints of
(civilian) aircraft and current ATM practice have been taken into account
for the developement of the method.

In the Mid-term level Model Predictive Control (MPC) has been selected
to cope with the performance optimisation requirements, longer lookahead
horizon and wind disturbance. Two directions of developement for the Mid-
term CD&R have been pursued using the Decentralised MPC framework,
one focusing on the integration of prioritisation as specified in the ConOps
and another one aiming to robustify the calculated resolution manoeuvres
against wind uncertainty.

The details of the algorithm developped have been described in deliver-
able D5.3 of iFLY [6] and some initial simulation results using small scenarios
have been presented.

1.2 Objective of this deliverable

The aim of this document is to present the initial validation results of the
conflict resolution methods that have been developed in the previous sub
work-packages of WP5. In order to assess the performance of the algorithms
in demanding multiple aircraft conflict scenarios reflecting the increased fu-
ture traffic levels , realistic air traffic samples provided by Eurocontrol Ex-
perimental Centre have been used.

According the Concept of Operations developed in WP1, the SA mech-
anism is composed by three levels, Long, Mid and Short-term, according to
the time-to-conflict. Long-term SA falls into flow management and is out-
side the scope of WP5, while CD&R is handled in the Mid and SHort-term
levels. The requirements and specifications for set by the ConOps devel-
oped in WP1 have been taken into consideration for each different level of

1Short-term CD&R handles conflicts up to about 5 minutes away, while Mid-term
resolves conflicts tens of minutes ahead (usually around 20 minutes)
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CD&R. An overview of the different surveillance scopes used in the three
CD&R levels is shown in Figure 1.

Figure 1: Air Traffic Surveillance in Short, Mid and Long Term CD&R

The refined CD&R algorithms developed within WP5 have been de-
tailed in deliverable D5.3 [6] of iFLY. For Short-term CD&R the proposed
algorithm is based on the NF framework [19], offering formal conflict avoid-
ance and convergence properties. Optimisation techniques and especially
MPC [17] have been employed for the Mid-term CD&R algorithm, allowing
the integration of intent information and performance criteria. Moreover,
one possible of integrating the Short and Mid-term CD&R levels into the
Airborne Separation Assurance System (ASAS) system using a hierarchical
structure has been suggested in the deliverable.

In order to evaluate the capabilities of the final algorithms in realistic
scenarios, a large-scale traffic sample has been used in simulations. The
validation of the CD&R algorithms has been performed independently, in
order to reduce the computational requirements and allow better evaluation
of each individual CD&R level.
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1.3 Organisation of this deliverable

The rest of this document is organised as follows: the air traffic sample
used for the algorithms validation is introduced in Section 2. The validation
procedure along with the results for the Short-term CD&R level are pre-
sented in Section 3 followed by the validation of the Mid-term algorithms
in Sections 4 and 5. Finally, the conclusions of the validation process are
summarised in Section 6.
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2 Realistic Air Traffic Sample

In order to assess the performance of the CD&R algorithms developed within
WP5, simulations against a realistic air traffic sample have been performed.
The traffic sample used is one which has been developed for the Episode 3
project for use in initial validation of the SESAR Target Concept [23]. It
contains about 3 times as many flights as on the peak day in 2006. The
sample contains flights in the European Civil Aviation Conference (ECAC)
area over a period of 48 hours. Most of the flights enter the ECAC area
in the second 24-hour period, though the sample also contains those flights
which begin on the preceding day but which are aloft within the ECAC area
at the start of the nominal day of the traffic sample. The traffic sample is
effectively an estimation of airline demand without modification of departure
times to avoid runway or airspace congestion. The sample contains almost
98000 flights in Europe which are airborne on a given day. Each flight
is described by the departure and arrival airport and the planned take-off
time, while no information about intermediate waypoints and flight altitude
is given.

In order to keep the computational cost of the simulations manageable,
a 400nm×400nm interest area centered around Zurich has been studied, as
show in Figure 2. This represents a busy part of central European airspace,
as indicated by the 35000 flights that fly in this area over the 24 hour period.
Since most of the flights that cross the interest area do not land or take-off
inside it, the start and destination positions have been set at the intersection
of the straight line between each flight’s departure and arrival airport and
the boundaries of the interest area. The effect of the earth’s curvature has
not been taken into account here for simplicity since the area considered is
relatively small. Moreover, since the purpose of the simulations performed
here is not to calculate accurate trajectories but to evaluate the capabilities
of the CD&R algorithms when handling large traffic samples, the precision
of these conventions is not significant for the final conclusions about the
algorithms’ performance. The evolution of total traffic inside the interest
area is shown in Figure 3. This estimation has been obtained by assuming
that each aircraft flies straight to its destination without any CD&R taking
place.

Since the aircraft type is provided for each flight, the performance pa-
rameters used in each set of simulations have been extracted from the BADA
aircraft performance model [8] according to the flight level chosen for each
case. More specific details about how the traffic sample has been used in
each set of simulations are given in the corresponding chapters (3, 4).
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Figure 2: Flights crossing the interest area studied
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Figure 3: Evolution of sample traffic inside the interest area

10



3 Validation of Navigation Functions Short-term
algorithm

3.1 Short-term CD&R using Navigation Function (NF)

The Short-term CD&R algorithm developed within WP5 is based on the
powerfull Decentralised Navigation Functions (NFs) methodology. This
framework employs an artificial potential field for each aircraft that is re-
pulsive with respect to conflicts with other aircraft and attractive to its goal
(destination). Each aircraft is driven along a flow line of its potential field,
thus avoiding all possible conflicts and reaching its goal. The key contribu-
tions to the NF methodology that have been made within WP5 of iFLY are
the consideration of aircraft performance constraints and ATC practice [20]
and the integration of an adjustable local awareness scheme that improves
the resulting trajectories and reduces the computational load [21]. More-
over, the use of the NF framework enables the Short-term CD&R algorithm
to provide formal guarantees for conflict avoidance and convergence to the
goal.

The resulting Short-term algorithm is completely decentralised, since
each aircraft needs only information about other aircraft inside its aware-
ness zone and calculates its control inputs independently. Thus no form
of clustering is used or required and no communication or negotiation is
performed. Combined with the feedback nature of the control scheme, this
allows a rapid recalculation and update of the controls, taking into account
any modelling errors and enviromental disturbances (eg. wind).

The details on the decentralised potential construction can be found
in [21]. The main principle lies in the use of a non-circular awareness zone
vs. circular zones used in previous NF approaches with limited sensing. The
choice of the shape of the awareness zone enables significant improvements in
the resulting trajectories and gives rise to implicit prioritisation resembling
a rules of the road scheme. In order to adapt the algorithm to aircraft
CD&R, the shape chosen for the awareness zone of each aircraft consists of a
semicircle in the rear semi-plane and a semi-ellipse in the forward semiplane
allowing longer range, as shown in Figure 4a. The notion behind this choice
is that each aircraft should exploit its full Short-term information range in
the forward direction to allow timely avoidance of potential conflicts, but
limit the effect of other aircraft on its sides and rear since these are not as
threatening and can induce undesired deviations.

Such an awareness zone shifts the attention of each aircraft mostly to-
wards other aircraft flying in front of it rather than behind it and creates
implicit prioritisation via asymmetrical sensing between two neighboring air-
craft, as shown in 4b. Thus, the effect of other aircraft flying behind the own
aircraft is significantly reduced, both in terms of the resulting trajectory and
the computational effort. It is important to note, that this adaptation of
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Figure 4: (a): The non-circular awareness zone used for each aircraft
(b): Implicit prioritisation of aircraft 2 wrt aircraft 1: Aircraft 1 is outside
aircraft’s 2 awareness zone, while aircraft 2 is insides aircraft’s 1 awareness.
Thus, only aircraft 1 considers aircraft 2 (but not vice versa) and only aicraft
1 will manoeuvre initially, unless it enter’s aircraft’s 2 awareness zone, re-
sulting in a cooperative resolution.

the NFs algorithm has not affected the formal conflict avoidance and con-
vergence guarantees that are the main advantage of this class of methods.

A simple scenario involving a single aircraft and a static obstacle (i.e. an
area-to-avoid) on its path has been used to demonstrate the benefits of the
improved awareness scheme. Three different shapes have been used for the
awareness zone, a small circle, the mixed circular-elliptical scheme presented
above with the radius of the small circle in the rear semiplane and a longer
range forward, and a large circle with a radius equal to the maximum range
of the previous case. The results are shown in Figures 5a, 5b and 5c, as
well as in Table 1. It is clear that the non-circular awareness zone shape
yields the best results, by allowing the aircraft to fly a smoother and shorter
trajectory while reducing the computation load of the algorithm.

Sensing Scheme (a) (b) (c)

Computation Time 25sec 20sec 26sec
Path Length 7.56 5.13 6.59

Total steering angle 6.11 3.66 5.00

Table 1: Simulation results: Obstacle avoidance using various sensing
schemes
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Figure 5: Simulation results: Obstacle avoidance using various sensing
schemes

The main principles of the control scheme employed in the validation
here are:

• The preservation of the formal conflict avoidance guarantees of the NF
methodology

• The reduction of unnecessary manoeuvring and deviations

• The use of a constant speed whenever possible

• Compatibility with Air Traffic Control (ATC) practice

The control scheme used for the navigation of each aircraft is detailed in
[22] and in [20] for the case of 3D flight, though in this report planar flight
has been assume for all simulation scenarios.
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3.2 Validation against a realistic traffic sample

3.2.1 Medium-scale scenarios

For the evaluation of the NF-based Short-term CD&R approach developed
in WP5 a number of computer simulations has been performed, using the
air traffic sample presented in section [section][2][]2. Since the scope of WP5
is limited to the en-route part of the flight, the initial and final positions
of all flights have been set at the same flight level corresponding to the
cruising altitude. For this initial validation it was preferred to be able to
simulate each flight level independetly, thus aircraft have been allowed to
use only horizontal manoeuvres to resolve conflicts. Results indicate that
for the traffic levels used vertical manoeuvres are not necessary, though it
is reasonable to assume that they would improve the performance in terms
of efficiency. Each aircraft in the simulation is governed only by the Short-
term CD&R algorithm which has to resolve all conflicts rather than handle
only those that are not solved by the Mid-term level. All computations have
been performed in a single desktop computer using the implementation of
the NF-based CD&R algorithm developped in MATLAB.

The first simulation setting is the simplest one, comprising the first 1000
flights that enter the interest area. This scenario spreads over a period
of around 26 hours, although the traffic density varies over time as will be
shown in the results. The Short-term CD&R algorithm handled the scenario
succesfully and no conflicts occured. The results of this simulation give an
overview of the performance of the algorithm: in Figure 6a the number of
aircraft flying inside the interest area at each time instant is shown, while the
next next Figure 6b presents the number of aircraft manoeuvring over time.
As can be seen in the figures, during the first 10 hours only a few aircraft
enter the interest area resulting in very few resolutions. Later on however
traffic increases significantly, up to about 140 aircraft flying simultaneously,
resulting in more resolutions, up to about 110 in progress simultaneously.
Finally, in Figure 6c the distribution of the total number of resolutions per-
formed by each aircraft while flying inside the interest area is shown. Most
of the aircraft perform less than 10-15, while only a handful are required to
perform more than 25 resolutions. It is expected that the integration of the
NF alforithm with a Mid-term solution will limit the number of conflicts
requiring Short-term action, allowing the Short-term level to handle only
those that require prompt action in order to guarantee resolution. Addi-
tional information about the scenario are shown in Table 2. Specifically,
the total number of flight hours gives an overview of the total flight time
simulated for all aircraft, and suggests that on average each aircraft flew
in the interest area for about 30 minutes, of which 72.9% of the time, or
about 22 minutes, the Short-Term CD&R algorithm was performing a res-
olution. This figure is increased here since there is no Mid-term algorithm
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to avoid some conflicts before the Short-term level is engaged. The average
number of resolutions each aircraft has to perform inside the interest area
is the mean of Figure 6c. The increase in total flown distance is calculated
over the straight-line paths between each flight’s initial and final position
and is shown to be quite small even without any optimisation eprformed by
the Mid-term CD&R level. Finally, the execution time implies that using a
single desktop computer for all 1000 aircraft is enough to run the NF-based
algorithm more that 300 time faster than real-time. Significant gains in this
aspect can be achieved by distributing the computation over all the aircraft
and more efficient implementation of the CD&R algorithm.

Total Aircraft 1000
Total Flight-hours 495.3

Average % time in resolution 72.9%
Average number of resolutions 4.65

Total distance increase 1.15%
Total execution time (sec) 5460

Real time speed 326x

Table 2: Simulation Results: First 1000 flights

In order to accommodate more aircraft, simulations using multiple flight
levels have been performed for the first 4000 flights in the traffic sample.
The aircraft have been to divided to 4 different levels, using two different
protocols. Each flight level is simulated independently since no vertical ma-
noeuvres are considered that would cause aircraft from adjacent levels to
interact. Thus, the choice of these two flight level allocation schemes used
here is merely to provide traffic data for individual levels that can be used in-
dependetly with the Short-term algorithm. Although a comparison between
the two schemes is discussed in the conclusions, flight level assignment is
beyond the scope of this report.

For the first set of simulations the flight level assignment is performed
according to the direction of the flight route, as defined by the straight line
path between the initial and final position. The first flight level includes
aircraft with a route direction between North and East (heading angle 0◦ −
90◦), the second routes flying between East and South (90◦ − 180◦), the
third between South and West (180◦ − 270◦) and the fourth between West
and North (270◦ − 360◦). As expected, the distribution of aircraft between
the different flight levels is not uniform, since some directions are busier
than others and this relation changes throughout the day. The second set
of simulations has been performed by assigning each flight one of 4 flight
levels (mentioned as FL A to FL D here) in a round-robin fashion, i.e. the
1st flight to enter the interest area is assigned to FL A, the 2nd to FL B
etc in a circular procedure. In this way the aircraft are distributed fairly
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Simulation Results: First 1000 flights
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Figure 6: Simulation Results: First 1000 flights

between flight levels throughout time. The difference between the two FL
assignments schemes can be seen in Figures 7a and , where the number of
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Simulation Results: First 1000 flights
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Figure 6: Simulation Results: First 1000 flights(cont.)

aircraft flying in each flight level is shown over time, without taking into
account any CD&R.

The results for the first set of simulations, where FL is assigned accordint
to the direction of flight, are presented in Figures 8a-8c and Table 3, where
significant differences can be observed between among the 4 flight levels. As
can be seen in the table, the total number of aircraft alone is not enough
to characterise the resolution effort, as measured by the average number
of resolutions per aircraft and the execution speed relative to real-time.
Specifically, the N-E and S-W flight levels have a similar number of aircraft
going through. However, as can be seen in Figure 8a, traffic in the S-W
flight level is highly concentrated between 25 and 30 hours, while the traffic
in the N-E level is spread out in a larger time period, significantly reducing
the algorithm effort.

The results of the simulations using the rounf robin flight level scheme
are shown in Figures 9a-9c and Table 4. Apart from the number of aircraft
being the same, the number of active resolutions is also very similar between
all 4 flight levels, since the distribution of flight directions is essentially
arbitrary. Thus, the evolution of all the metrics presented in the figures and
the statistics table are very similar for all flight levels.
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Figure 7: Estimation off traffic over time using different FL assignment
protocols
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Simulation Results: FL assignment by route direction
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Figure 8: Simulation Results: FL assignment by route direction
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Simulation Results: FL assignment by route direction
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Figure 8: Simulation Results: FL assignment by route direction(cont.)

Route Direction N-E E-S S-W W-N

Total Aircraft 705 1120 789 1386
Total Flight-hours 258,49 675,28 419,57 840,29

Avg time in resolution 62,23% 79,58% 86,20% 79,12%
Avg number of resolutions 2,22 7,49 7,96 5,32
Total distance increase 0,393% 1,39% 2,559% 1,49%

Total execution time (sec) 1361 10976 6708 12320
Real time speed 683,7× 221,5× 225,2× 245,5×

Table 3: Simulation Results: FL assignment by route direction

Round-Robin Queue FL A FL B FL C FL D

Total Aircraft 1000 1000 1000 1000
Total Flight-hours 523,63 521,37 522,75 525,32

Avg time in resolution 69,41% 67,42% 70,37% 68,71%
Avg number of resolutions 7,25 6,96 7,58 7,42
Total distance increase 2,39% 2,37% 2,44% 3,19%

Total execution time (sec) 5886 5620 843 5985
Real time speed 320,3× 334,0× 322,1× 316,0×

Table 4: Simulation Results: Round Robin FL assignment
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Simulation Results: Round Robin FL assignment
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Simulation Results: Round Robin FL assignment
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Figure 9: Simulation Results: Round Robin FL assignment

3.2.2 Large-scale scenarios

The simulations results presented in the previous chapter give a clear indi-
cation that NF-based short-term aircraft CD&R can be succesfully used, at
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Simulation Results: Round Robin FL assignment

Total resolutions

A
ir
cr
af
t

FL A

FL B

FL C

FL D

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

(c)

Figure 9: Simulation Results: Round Robin FL assignment(cont.)

least in the first 24-hours of the traffic sample used. As has been shown in
Figure 3, the first 4000 which have been simulated in section 3.2.1 cover a
little less than the first 30 hours of the traffic sample. including the begin-
ning of the second day where tottal traffic is significantly higher. In order to
give a clearer view of the NF algorithm performance under the heavy traf-
fic conditions of the second 24-hour period, additional simulation scenarios
have been used, chosen so that they span a significant part of the high-traffic
period.

For these larget sets of simulations 16000 flights have been used, while
the first 700 flights have been ommited to focus on the high-traffic period.
Refering again to Figure 3, it can be seen there that this amount of flights
span the first half (about 8-10 hours) of the high-traffic period. Thus the
results presented below should give a reliable view of the NF algorithm
performance under the heavy traffic levels found in the traffic sample. As
in the previous section, flights have been divided to 4 different flights levels
using the two preciously presented protocols; the first set of simulations
below uses the route direction to assign the flight level, while the second one
uses the round robin approach.

The results using the first FL assignment rule are shown in Figures 10a-
10c. As in the smaller scenario above, it is obvious that this rule produces
a different traffic load for each flight level, according to the route direction
of incoming traffic. It can be seen in Figure 10a that a total of almost 250
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aircraft are flying for several hours in the two busiest flight levels. This heav-
ier traffic was succesfully handled by the proposed NF Short-term CD&R
algorithm and no conflicts were recorded. Statistical information about this
set of simulations can be seen in Table 5. Compared to the data in Table 3,
the percentage of time in resolution and the average number of Short-term
encounters are somewhat increased, due to the higher traffic desnity of the
large-scale sample used here.

Route Direction N-E E-S S-W W-N

Total Aircraft 2679 4857 3212 5252
Total Flight-hours 1101,59 2340,54 1388,19 2536,84

Avg time in resolution 78,77% 86,91% 83,37% 84,92%
Avg number of resolutions 4,68 7,49 5,74 7,00
Total distance increase 0,86% 1,45% 1.26% 1,39%

Table 5: Large-Scale Simulation Results: FL assignment by route direction

Finally, the large-scale scenario of 16000 flights has been used with the
round robin FL assignement rule, resulting in a uniform distribution of 4000
flights per level. The results of this set of simulations are shown in Figures
11a-11c. The total number of aircraft in each flight level remains above 100

Large-Scale Simulation Results: FL assignment by route direction
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Figure 10: Large-Scale Simulation Results: FL assignment by route direc-
tion
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Figure 10: Large-Scale Simulation Results: FL assignment by route direc-
tion (cont.)
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Round-Robin Queue FL A FL B FL C FL D

Total Aircraft 4000 4000 4000 4000
Total Flight-hours 1381,07 1362,55 1366,75 1365,72

Avg time in resolution 79,48 % 79,10% 79,04% 78,98%
Avg number of resolutions 6,47 6,45 6,57 6,51
Total distance increase 2.78% 2.88% 3.51% 2.89%

Table 6: Large-Scale Simulation Results: Round Robin FL assignment

for almost 10 hours, approaching 150 momentarily. The number of active
resolution remains also high. Table 6 shows that the average time in each
Short-term encounter is increased compared to the medium scale round-
robin simulations (see Table 4) but the load remains equally distributed
between levels. As in the previous tests, the NF algorithm resolved all
conflicts succesfully and no loss of separation was observed.

3.3 Conclusions

Overall, the results of the simulations suggest that NFs can succesfully be ap-
plied to realistic aircraft scenarios. The decentralised nature of the algrithm
means that its performance is not affected by the total number of aircraft.

Large-Scale Simulation Results: Round Robin FL assignment
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Figure 11: Large-Scale Simulation Results: Round Robin FL assignment
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Figure 11: Large-Scale Simulation Results: Round Robin FL assignment
(cont.)
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The results of the two different protocols for dividing the aircraft into flight
levels indicate that the path direction creates on average less conflicts to
be resolved, thus allowing the aircraft to make less detours and fly shorter
distances.

Further developement in the area of Short-tem CD&R using NFs may
be directed towards the simplification of the resulting trajectories, using
some motion primitives (lines, arcs, etc). Moreover, the incorporation of
additional criteria for selecting the intruding neighbors that contribute to
each aircraft’s potential may be considered. This can be used to exploit
conflict prediction rules based on all the currently available information.
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4 Validation of Prioritized MPC Mid-term algo-
rithm

In this Section, a Conflict Resolution (CR) method using prioritized MPC,
which incorporates the use of priority rules which are proposed within the
A3 concept [7], is outlined and validated against test scenarios, as well as
a realistic traffic sample. The algorithm produces 2D resolutions and cur-
rently ignores vertical motion of aircraft. In the realistic traffic sample case,
heuristics are developed in order to assign flights to different flight levels
as well as to determine the group of aircraft that the resolution algorithm
needs to be applied.

This method adopts a strict priority scheme, as the one proposed by iFly
D1.3 [7], according to which higher priority aircraft may only maneuver in
cases that a maneuver by all lower priority aircraft is not adequate to resolve
the conflicting situation. In this section, the method is outlined and the
results are presented; details on the method can be found in the Appendix
A. First, the centralized version of the scheme is presented and then in a
decentralized version of the scheme is developed.

4.1 Centralized Prioritized Conflict Resolution

The dynamics for a level flight cruise are, in general nonlinear. The CR
problem can be described as the optimal control problem that determines
the optimal (corresponding to some desired cost function) inputs for all
aircraft such that they respect the following sets of constraints:

• Velocity and acceleration constraints. Aerodynamic reasons impose
some physical constraints on the minimum and maximum True Air
Speed (TAS) an aircraft can fly at each altitude. Furthermore, passen-
ger comfort, as well as other human factors reasons impose constraints
on the acceleration and the turning rate.

• Conflict avoidance constraints. All aircraft should remain separated
at all times, by at least a minimum distance ∆, which is typically set
to ∆ = 5nm for cruising altitudes.

• Priority constraints. The priority concept used enforces the constraint
that an aircraft will maneuver if (and only if) all aircraft with lower
priority cannot satisfy the problem constraints without a maneuver by
this aircraft.

The problem described cannot be modeled as a tractable optimization
problem, due to the complexity of the nonlinear constraints. In order to
be able to resolve it, a series of approximations that allow us to formulate
the problem as a Mixed Integer Linear Program (MILP) is developed. Even
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though the resulting optimization problem is still NP-hard, instances of real-
istic size in the ATM context are readily solvable by commercially available
computational tools.

4.2 Centralized Formulation

The problem is modeled as a two-level hierarchical algorithm. At the highest
level, a centralized MPC problem with simplified dynamics is solved, taking
into account all constraints and generating an optimal set of inputs for
each aircraft over a certain prediction horizon N . Once the optimal input
sequences have been generated for all aircraft, they are pushed down to
the lower level in the hierarchy, namely the Flight Management System
(FMS). The FMS generates the appropriate inputs to be applied through
the autopilot on the actual aircraft dynamics. The optimization problem is
then resolved periodically and applied in a receding horizon fashion. This
setup is illustrated in Figure 12.

Figure 12: Hierarchical Multi-Level System

The MILP formulation of the problem has been constructed using the
following simplifications:

Dynamical, velocity and acceleration constraints. The nonlinear dy-
namics are abstracted to a linear discrete-time model, based on single inte-
grator dynamics. For velocity and acceleration constraints, instead of using
2-norm inequalities, simplified constraints using 1- and ∞-norms are used.
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Cost and priority constraints. Guided by the setup in [12], we define
binary variables, one for each aircraft. Then, the cost is designed such
that deviations from the nominal trajectories of the aircraft are penalized.
Furthermore, a higher cost incurs for allowing a specific aircraft to maneuver,
according to its priority. Using an appropriate weighting, we ensure that the
priorities part of the cost dominates the deviation from nominal part. The
binary variables ensure that the satisfaction of higher priority constraints
always results in a lower cost than any possible combination of the lower
priority constraints. In the air-traffic problem, this would mean that a
higher priority aircraft will deviate from its nominal flight plan only if all
other aircraft with lower priority cannot resolve the conflict.

Separation constraints. It is important that the formulation is robust
against wind, so that conflicts do not occur even in the case of strong winds.
Nevertheless, wind is generally unbounded, making a robust formulation
against all possible noise realizations impossible. Instead, a confidence in-
terval of the noise will be chosen against which the problem will be made
robust. A “safe” choice would be to choose the 99.7% confidence interval,
which corresponds to making the formulation robust against 99.7% of the
possible wind realizations. The constraints are then conservatively approx-
imated by ∞-norms instead of 2-norms. Different sets of constraints are
constructed, depending whether the wind correlation structure is taken into
account or not. Furthermore, as the constraints are enforced in sampled
intervals, rather than in continuous time (to maintain tractability), they
are either enforced at a finer grid between the update samples or enforced
with additional conservative constraints on the samples, making sure that a
separation does not occur between the samples.

Constraint relaxation. Because of the model mismatch between the ac-
tual nonlinear model and the simplified linear one, as well as because of the
fact that the tails of the wind error distribution are ignored, it is likely that
aircraft find themselves in a situation where a feasible solution no longer
exists. It is nevertheless important that even in such a situation, the algo-
rithm provides aircraft with a solution, in order to avoid an actual collision.
In such a configuration, aircraft should try to return as soon as possible
to a feasible configuration, rather than continuing to fly in a potentially
unsafe configuration optimizing over usual criteria. This is dealt, through
the introduction of some additional binary variables, in a similar fashion to
the priority binaries, but incurring a higher cost and allowing their actu-
ation only to incur when otherwise the situation would remain infeasible.
Then, the optimization problem becomes the maximization of the minimum
guaranteed separation among all aircraft and fuel consumption is not still
the most important parameter. More specifically, if maintaining a safety

30



distance is not possible for the whole optimization horizon of the MPC algo-
rithm, the algorithm attempts to minimize the distance by which the safety
separation is violated, while also keeping it as far in the future as possible.
The rationale behind this is that since the algorithm is designed to find a ro-
bust resolution against all possible wind scenarios, the furthest in the future
a safe separation cannot be guaranteed, the more likely it is that it will not
be violated in practice, as worst-case scenarios for the designed uncertainty
are unlikely to happen at all steps.

Feedback policies. Finally, two different open-loop strategies against a
feedback one are evaluated. The basic difference between a feedback policy
against an open-loop one is that in such a formulation, the fact that aircraft
will re-optimize after the first parts of the inputs are applied is taken into
account when calculating the inputs for the aircraft. In this fashion, the
constraints do not get tighter as rapidly as in the open-loop case (see A).
A heuristic, trying to maintain the lower computation time required by
open-loop policies, assuming that aircraft will get to correct any deviations
because of the wind, but not explicitly coding it in the optimization, but
allowing the constraints to tighten only only one step and then saturating
them, is also presented.

4.3 Overall hierarchical formulation

The scheme proposed for the CR problem is summarized in Algorithm 1.
The problem is solved every h minutes and when the optimal solution is cal-
culated, only the first step is applied. Then, the first step of the optimal so-
lution is translated through the FMS into thrust and bank angle commands
that the autopilot implements on the aircraft dynamics for h minutes. The
procedure is then repeated in a receding horizon fashion, until all aircraft
reach their destination.

Algorithm 1 Prioritized Hierarchical Algorithm

Require: Initial aircraft positions
1: while Not all aircraft have arrived at their destinations do
2: Measure aircraft positions
3: Solve the MPC problem
4: Translate the calculated inputs through the FMS and apply them

through the autopilot for the first h minutes
5: Measure new aircraft positions
6: end while
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4.4 Decentralized Hierarchical Formulation

While in the previous case, it is assumed that a CR algorithm can be solved
on ground and up-linked, for instance through System Wide Information
Management (SWIM), to the aircraft, there might be no computational ca-
pability on ground to perform a CR. In this, the priorities introduce a nat-
ural direction for decentralizing the problem. Assuming that the algorithm
as well as the communications between aircraft are fast enough to ignore
their effects in such a setting, a sequential approach is proposed. Given the
priorities, each aircraft tries to resolve a simpler version of the centralized
problem, having the ability to also determine control actions for aircraft
with lower priority. In the case that the problem is infeasible (also in the
centralized case), only the highest priority aircraft is allowed to calculate
and announce a resolution that allows the violation of the constraints (since
it is the only aircraft that can determine whether a resolution maneuver
by all aircraft would be enough to avoid a constraint violation). Then, the
lowest priority aircraft that finds a feasible solution, announces it and it is
implemented by all aircraft.

The scheme proposed for the CR problem is summarized in Algorithm
2.

Algorithm 2 Decentralized Prioritized Hierarchical Algorithm

Require: Initial aircraft positions
1: while Not all aircraft have arrived at their destinations do
2: Measure aircraft positions
3: Set i = lowest priority aircraft
4: while The decentralized MPC problem for aircraft i does not produce

a feasible solution do
5: Set i = the aircraft with the lowest priority among the remaining

aircraft
6: end while
7: Translate the calculated inputs through the FMS and apply them

through the autopilot for the first h minutes
8: Measure new aircraft positions
9: end while

4.5 Simulation setup and results

To evaluate the performance of the proposed algorithm for various choices of
parameters, such as priorities and assumptions about the wind, a benchmark
4-aircraft encounter is used. The encounter under consideration is shown in
Figure 13. All aircraft start at the same flight level and on a circle with a
diameter of 250km. They all fly towards the diametrically opposite point
on the circle. Nominally, all aircraft would collide at the same time at the
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1 Yes Yes Correlated Yes No No

2 No Yes Correlated Yes No No

3 Yes Yes No wind Yes No No

4 Yes Yes Uncorrelated Yes No No

5 Yes Yes Correlated No No No

6 Yes Yes Correlated Yes No Yes

7 Yes Yes Uncorrelated Yes Yes No

8 Yes Yes Uncorrelated Yes Saturation No

9 Yes Yes Correlated Yes Saturation No

Table 7: Alternatives tested in simulation

center of the circle. All possible priority configurations have been studied
and in Figure 13 one of those possibilities is illustrated. The sampling period
of the algorithm Th is set to 3 minutes and the prediction horizon is set to
N = 5. For the cases that separation constraints are enforced at inter-sample
points, L = 6 is used, i.e. the constraints are enforced every 30 seconds. In
all simulations, the MILP solver CPLEX [10] through the interface package
YALMIP (see [15]) for MATLAB has been used. All algorithm alternatives
are evaluated through 1000 Monte Carlo runs, representing 1000 different
wind and priority scenarios. The algorithms are compared in terms of their
effectiveness in resolving conflicts (by measuring the minimum separation
between the simulated aircraft trajectory realizations), in terms of fuel burnt
and in terms of computation times.

The different scenarios tested are presented in Table 7.

4.5.1 Effect of priorities

First the effect of the priorities in the resolution maneuvers is examined.
Two cases are simulated:

Case 1 Resolution with priorities: In this case, as shown in Table 7, apart
from imposing priorities on aircraft, constraints are allowed to be relaxed
in case no feasible solution can be found, wind is assumed to be correlated,
constraints are enforced on sub-intervals of the sampling period and the
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Figure 13: Conflict scenario with 4 aircraft

problem is solved in a centralized fashion without using feedback control
policies.

Case 2 Resolution without priorities: This case is exactly the same as case
1, with the exception that priorities are not used.

Statistics of the simulations are provided in Table 8. Data about the
average fuel burnt per aircraft, the percentage of Monte Carlo runs in which
conflicts occurred, the percentage of pairs of aircraft that were involved in
conflict, the mean and maximum cpu time the solver needed to produce a
resolution (for each time step, i.e. every three minutes) and the amount
of cases that the separation constraints had to be relaxed are indicated.
As shown, each aircraft burns on average 8kg more fuel when priorities
are present. This is somewhat expected, as some aircraft are forced to
fly larger maneuvers in order to avoid higher priority aircraft. Figure 15
presents a box-and-whisker diagram for the fuel burnt per aircraft in the
two cases. As shown, the highest priority aircraft has a clear fuel advantage
in the case that priorities are taken into consideration, while the other three
aircraft contribute equally to the resolution in terms of fuel burnt. This
happens because of the fact that in the cost considered (13), the penalty on
the deviation of aircraft from their optimal inputs does not depend on the
aircraft priority, i.e. if the three lower priority aircraft all have to maneuver
(which is the case in our setup), then they contribute equally to the conflict
resolution.

An important fact to note though is the higher amount of conflicts oc-
curring when priorities are not present. As the constraints on the other
hand were never in fact relaxed during the simulations, this is explained by
the model mismatch between the simplified linear model (4) and the actual
nonlinear dynamics (1); in the presence of priorities the inputs per aircraft
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are more consistent throughout each simulation, leading thus to smaller er-
rors between the two models. As shown in Figure 14a, even in cases that
the separation is lost, it never drops below 4nm, while when priorities are
not present (Figure 14b), the aircraft remain separated by more than 3nm
in all cases.

The algorithm appears to be faster in the case that priorities are present,
both on average as well as in worst case. This has again to do both with
the fact that the solutions are consistent throughout the simulations, as the
previous solutions are fed to the solver as an initial starting point. Fur-
thermore, the number of extra binary variables needed when priorities are
present is not big compared to the number of binaries required for the sep-
aration constraints.
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Figure 15: Fuel consumption
per aircraft (red:with priorities,
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Case 2 1685 9.4% 1.6% 0.8 10.8 0

Table 8: Comparison of prioritized
and non-prioritized resolutions

4.5.2 Effect of wind simplifications

To examine the different possible wind simplifications, the following three
cases have been simulated:
Case 1 Resolution with correlated wind model: In this case, as shown in Ta-
ble 7, apart from the correlated wind assumption, priorities are imposed on
aircraft, constraints are allowed to be relaxed in case no feasible solution can
be found, constraints are enforced on sub-intervals of the sampling period
and the problem is solved in a centralized fashion without using feedback
control policies.

Case 3 Resolution without wind: This case is exactly the same as case 1,
with the exception that wind used in the MPC algorithm is assumed to be
zero, but the system is simulated with the actual wind model dynamics.

Case 4 Resolution with uncorrelated wind: This case is exactly the same as
case 1, with the exception that the wind disturbances the MPC algorithm
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0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

Minimum separation (nm)

N
um

be
r 

of
 p

ai
rs

No Priorities

Minimum Allowed
 Separation ∆
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(c) Case 3
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(d) Case 4
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Figure 14: Minimum observed separations over all pairs of aircraft
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are assumed to be uncorrelated, but the system is simulated with the actual
wind model dynamics.

Figures 14c, 14d show the histograms of the minimum separations ob-
served over all pairs. As the histograms suggest, ignoring the wind and solv-
ing a deterministic problem instead cannot adequately resolve the conflicts
in several cases, leading to a substantial conflict probability. On the other
hand, ignoring the correlation structure of the wind produces more conser-
vative resolutions. This can be observed both in the histogram, where the
minimum achieved separations between aircraft are now bigger, as well as
in the fuel consumption, shown in Figure 16, incurring higher fuel consump-
tions on average.

Table 9 shows some more specific statistics regarding the simulations in
these three cases. As shown, ignoring the correlation structure of the wind
leads to an average 3kg more fuel burnt per aircraft. This indication is quite
important, as this improvement in fuel consumption comes at moderate
computational cost, as shown by the mean and worst case computation
times. Finally, attempting to solve a deterministic problem, assuming that
the wind speed is small enough to be ignored leads to many unresolved
conflicts. The fact that the number of actual conflict occurring is much
higher than the times that the constraints had to be relaxed in the MPC
problem indicates that because of the assumption that wind is not present,
it is not possible for the algorithm to detect conflicting situations and most
of them actually occur between the sampling times of 3 minutes of the MPC.
Thus, they are not perceived by the algorithm, since when it recalculates a
resolution, the aircraft have already exited the conflicting area.
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Figure 16: Fuel consumption
per aircraft (red:correlated,
blue:uncorrelated, green:no wind)
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Case 1 1693 0.8% 0.1% 0.4 3 0
Case 3 1679 74% 17% 0.5 2 6.5%
Case 4 1696 0 0 0.5 7 0

Table 9: Comparison of three differ-
ent wind assumptions
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4.5.3 Separation constraint enforcement

An alternative that might be able to reduce the computational cost is, in-
stead of checking the constraints on points in-between the MPC samples, to
enforce some linear constraints on the binary variables and on how they are
allowed to change values between consecutive time steps in the horizon. To
quantify how much conservatism this approach adds to the formulation, a
comparison will be done between the two following cases:
Case 1 Resolution with additional constraints in-between MPC samples:
In this case, as shown in Table 7, apart from allowing the constraints to be
relaxed, imposing priorities on aircraft, taking wind correlation into account,
and solving the problem is solved in a centralized fashion without using
feedback control policies, constraints are enforced on sub-intervals of the
sampling period.

Case 5 Resolution without additional constraints in-between MPC samples:
This case is exactly the same as case 1, with the exception that instead of
imposing constraints in-between MPC samples, constraints are imposed on
the binary variables used for the separation constraints.

Comparing the Figures 14a, 14e, the conservativeness introduced by this
approach is obvious, as aircraft in order to avoid the conflicts maneuver much
more, and are farther separated. This is also clear from Figure 17, where
the fuel burnt is presented and the fact that more fuel needs to be consumed
in order to resolve the situation in the case that the separation binaries are
further constrained to avoid introducing more constraints between the MPC
samples. On the other hand, as shown in Table 10, avoiding to introduce
more binaries behaves better computationally, solving the problem much
faster in this case.
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Figure 17: Fuel consumption per
aircraft (red:constraints in-between
samples, blue:No constraints in-
between samples)
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Case 1 1693 0.8% 0.1% 0.4 3 0
Case 5 1696 0 0 0.3 1 20.4%

Table 10: Comparison of the two dif-
ferent constraint separation enforce-
ments
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4.5.4 Decentralized approach

In an ASAS environment, a CR algorithm should have the ability to oper-
ate in a decentralized fashion, onboard the aircraft. To evaluate its perfor-
mance, this concept is compared against the centralized, ground-based CR
with an equivalent formulation. In this decentralized approach proposed, as
discussed, all aircraft are optimizing in parallel, with a different set of con-
straints each (see Section 4.4). Then, the aircraft with the lowest priority
that finds a feasible resolution, announces it and all aircraft implement it.
The two following cases are compared in order to quantify how much worse
such a decentralized setting performs:
Case 1 Centralized algorithm: In this case, all the optimization is done
on the ground. As before, the constraints are allowed to be relaxed, prior-
ities are imposed, wind correlation is taken into account and no feedback
is applied, while to maintain separation, the constraints are enforced on
sub-intervals of the sampling period.

Case 6 Decentralized MPC algorithm: This case is exactly the same as case
1 in terms of configuration, with the exception that instead of solutions being
calculated on the ground, they are calculated by the aircraft themselves.

As the configuration in this setting does not ignore any of the constraints
of the centralized algorithm, it is expected that no additional conflicts will
arise. Indeed, as Figures 14a, 14f suggest, aircraft behave in a very similar
manner in the two cases. As Table 11 suggests, the extra fuel burnt by
aircraft when resolving conflicts in a decentralized setting is only 1kg per
aircraft. The computation times are a bit better for the decentralized case,
but is should be noted that the computation times reported are the ones
for the aircraft that actually takes the decision (i.e. the total computation
is higher). Finally, Figure 18 shows the distribution of the fuel consump-
tion among the involved aircraft, where the similar behavior of those two
formulations is also observed.

4.5.5 Open-loop vs Feedback approach

The last case examined is the several alternatives discussed to calculate the
optimal input sequence. Three different alternatives have been simulated2:
Case 1 Open-loop control: This is the usual case, where the MPC is solved
in an open-loop fashion with the typical configuration as before.

Case 7 Feedback control policies: This case differs from the setup in case 1
as an explicit, affine on the noise, policy is required for the inputs calculated.
Furthermore, the correlation structure of the wind is ignored.

2The case of feedback control policies with correlation is ignored, as the results already
suggest that the more conservative feedback control policies without correlation already
violate the separation very often.
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Figure 18: Fuel consumption per air-
craft (red: Centralized, blue: Decen-
tralized)
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Case 1 1693 0.8% 0.1% 0.4 3 0
Case 6 1694 0.3% 0.05% 0.3 2.6 0

Table 11: Comparison of centralized
and decentralized formulations

Case 8 Open-loop control with constraint growth saturation: This case is
exactly the same as case 4 in terms of configuration, with the only exception
constraints do not grow along the horizon, but are considered to saturate
after a one-step growth.

Case 9 Open-loop control with constraint growth saturation and correlation
of the wind: Here, the correlation structure of the wind is also taken into
consideration. Otherwise, the setup is the same as in 8.

Once again, Figures 19b, 19c and 19d show the distribution of the mini-
mum observed separations over all pairs of aircraft. Figure 19a is re-included
for comparison purposes. In combination with Table 12, that provides some
more statistical information about the simulations, several interesting facts
can be extracted. Concerning the case that saturation is introduced, both in
the correlated, as well as in the uncorrelated model, it appears that the dis-
tributions of the minimum observed separations among aircraft are shifted
towards the minimum prescribed separation ∆. This allows for less con-
servative resolutions to be calculated, reducing the fuel consumption. In
the case that feedback control is applied, a different shape appears in the
distribution of the minimum observed separations (see Figure 19b). In this
case, it appears that the algorithm attempts to push all aircraft to avoid
the conflict tangentially, taking advantage of the expected knowledge of the
noise. Nevertheless, because of the mismatch between the models, this is
not always possible, and in several cases conflicts occur. It is still important
to notice that in no case do the aircraft come closer than 3nm, indicating a
mismatch of up to 2nm between the linear and the nonlinear models. In the
presence of such mismatches in general, one should expect that an algorithm
which can stress the model and find optimal solutions on the separation con-
straints, may violate the constraints in the actual nonlinear system.
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Figure 19: Minimum observed separations over all pairs of aircraft

The fuel consumption is in all cases better than the open loop control,
as shown in Figure 20. An interesting fact is that saturated open-loop burns
less fuel in some cases than the feedback control case, but this is probably
due to the often occurrence of constraint relaxations that differentiate the
cost. The computation times are similar for the three open-loop cases, while
they are about two orders of magnitude higher in the case that the algorithm
solves for closed-loop policies, as shown in Table 12.

4.5.6 Summary of simulations

Several algorithm configurations have been examined. From the correspond-
ing results, it is clear that the cases that the constraints do not grow along
the horizon are the best in terms of fuel consumption, while maintaining
safe separation. When this heuristic is not used, the use of the correlation
structure of the wind may be used to improve the algorithm performance,
without introducing further complexity to the computations.

An important fact is the similar performance of the centralized and the
decentralized algorithm, as well as the better behavior of the algorithm
when priorities are introduced. In general, it seems that an open-loop MPC
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Figure 20: Fuel consumption per air-
craft (red: Open-Loop, blue: Closed-
Loop, green: Saturated Open-Loop
(uncorrelated), black: Saturated
Open-Loop (correlated)
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Case 1 1693 0.8% 0.1% 0.4 3 0
Case 7 1686 19.8% 3.9% 38 750 0.3%
Case 8 1685 0 0 0.3 3.2 0.3%
Case 9 1686 0.18% 0.04% 0.4 6.3 5.4%

Table 12: Comparison between open-
loop, saturated and closed-loop poli-
cies

algorithm, with a saturated growth of its constraints is the best fit for the CR
purposes studied here. Nevertheless, this should not be considered a general
result about the optimization itself, as the dynamics used in the optimization
are not the actual nonlinear system dynamics, while the system performance
is measured on the nonlinear ones.

4.6 Validation against a realistic traffic sample

In order to assess the performance of the CR algorithm developed, the traffic
sample described in Section 2 has been used. For those flight plans, in order
to determine the points that they enter and leave the controlled airspace, it
is assumed that the take off and landing phases are carried out according
to nominal operations, without any uncertainties. Then, the points that
each aircraft would have to enter at each flight level, or start descending,
along with the corresponding times are calculated. Those are the specific
points and times in the future that each aircraft enters or leaves the area
of interest. For flights that those points are outside the interest area, their
entry and exit points to the area are set at the intersection of the straight
line between their entry and exit point at each flight level and the boundaries
of the interest area.

The parameters for each aircraft are taken from the Base of Aircraft
Data (BADA) database [8]. To cope with the big number of aircraft of
the traffic sample in a reasonable computation time, the wind effects will
be ignored for this simulation. Furthermore, a heuristic on distributing
aircraft on different flight levels will be used, as well as a rudimentary conflict
detection in order to divide each scenario in smaller ones, that can be better
handled by the MPC algorithm presented.
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4.6.1 Multiple Flight Levels

In an actual ATM scenario, not all aircraft fly at the same flight level,
but several levels might be used for this purpose. Despite the fact that
airlines ideally want their aircraft to fly as high as possible (for better fuel
consumption), this is not always possible, because of the limits of the number
of aircraft that can be accommodated per flight level.

A natural way to assign each aircraft at a flight level is to divide the
traffic according to their flight directions. This choice, apart from intuitive,
is also appropriate for the MPC algorithm, as, since aircraft are flying on
similar directions and airspeeds, if when an aircraft enters the flight level
the problem is feasible within the prediction horizon, it will remain fea-
sible throughout the simulation. The traffic sample is thus divided in 4
parts, according to four perpendicular directions, chosen such that aircraft
are approximately equally distributed among them. Then, each aircraft is
assigned to a different nominal flight level according to its direction (and its
maximum operating flight level).

Thus, to determine at which flight level an aircraft should enter, the
aircraft notifies a centralized MPC algorithm, which is assumed to be su-
pervising all different flight levels, at which flight level and at which point
it is planning to enter. This supervisory MPC checks, using the algorithm
previously described in Section A.1, if on the requested flight level it is fea-
sible to admit the aircraft or it would lead to a potential loss of separation.
In the latter case, the aircraft is not admitted at this flight level, and the
process is repeated for lower flight levels, until the aircraft is admitted at
the highest feasible flight level, with aircraft flying along the same direction.

4.6.2 Identifying conflicting situations

In such a big traffic sample, it is important to identify (at each time step) all
aircraft that are involved in a conflict within the prediction horizon and cre-
ate several groups of conflicting aircraft to facilitate the resolution process.
This is done by iterating the following steps:

• Identify all aircraft that are about to enter our area of interest within
the MPC prediction horizon.

• Build an undirected graph with all aircraft as vertices and edges con-
necting the pair of aircraft that are involved in conflicts, assuming that
all aircraft keep their current flight plans.

• Assume that all aircraft which are involved in conflicts maneuver and
identify all other aircraft that some maneuver of the former ones might
lead them to conflict, adding the corresponding edges and vertices in
the graph. Repeat the process until no new edge or vertex is introduced
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to the graph. From now on, this will be referred to as the Conflict
Graph.

• Determine all the connected components3 of the Conflict Graph. For
this purpose, Tarjan’s algorithm is used [25], which is already imple-
mented in MATLAB.

• Resolve each connected component as a separate group of conflicting
aircraft.

Using this approach, the size of the scenarios that have to be resolved at
each time step remains moderate. Furthermore, for computational reasons,
we have limited the allowed size of a connected component to 90. Thus, if
a cluster of aircraft that need to be resolved reaches this number, no other
aircraft are admitted if they would result in a bigger group to be resolved.
Then, those aircraft are redirected to lower flight levels. This limitation
arises mainly because of the available computational power at the time of
the simulations and not with the algorithm itself.

For this traffic sample, the centralized version of the algorithm developed
will be used, while the actual nonlinear dynamics are ignored.

In total 34238 aircraft from the traffic sample can fly higher than FL260,
which is the lowest level simulated. Because of the limit imposed on the
algorithm, 7104 aircraft were not admitted at any flight level. The minimum
observed separations between all pairs are shown in Figure 21a, while in
Figure 21b the highlighted area in Figure 21a is shown in detail. As shown,
no conflicts arise and aircraft are safely separated under the assumptions
that no wind arises and no mismatch between the actual nonlinear model
and the linear one exists.
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Figure 21: Statistics for the traffic sample

Furthermore, Figure 22a shows the number of flights in the interest area
at all flight level at each time, while Figure 22b shows the number of flights
that need to be taken into account when performing the CR algorithm (i.e.
both the flights that are currently flying in the airspace, as well as those that

3A connected component of an undirected graph is a maximal group of nodes that are
mutually reachable that are connected to each other by edges.
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are requesting to enter within the airspace within the prediction horizon of
the MPC algorithm). Those flights are divided in several groups, as shown
in Figure 22c, the biggest of which comprises of a number of aircraft shown
in Figure 22d. Finally, the amount of aircraft maneuvering at each time
step is shown in Figure 22e.
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Figure 22

Statistical results from the simulation of the traffic sample are provided
in Table 13. As shown, the total extra flown distance because of the conflict
resolution is less that 2.2% in all flight levels in order for the situation to
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Figure 22

FL260 FL280 FL290 FL310 FL330 FL350 FL370 FL390

Aircraft 2710 2731 3060 2860 3557 3761 4065 4390

Total extra
1.97% 1.83% 2.15% 2.06% 1.66% 1.48% 2% 1.64%

distance flown

Runtime (min) 474 448 501 523 558 503 543 486

Table 13: Traffic sample statistical results
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Figure 22

remain conflict free. One should note that the fact that aircraft might be
flying in non-optimal flight levels is here ignored, as aircraft are assigned in
a heuristic way to flight levels.
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5 Validation of Distributed MPC Mid-term algo-
rithm

In this section, we summarise findings obtained on application of robust
multiplexed Model Predictive Control to both simple scenarios and a subset
of the realistic air traffic samples considered throughout this report. Unlike
the mid term conflict resolution algorithms presented in the previous section,
the algorithms considered here are robust to the effects of wind uncertainty
and provide theoretical guarantees of conflict avoidance and arrival at pre-
determined target regions. The purpose of this section is to investigate the
potential of this alternative mid term conflict resolution algorithm on more
realistic scenarios and assess its limitations. We first provide a brief recap
of distributed robust multiplexed MPC in Section 5.1. Results on simple
scenarios are presented in Section 5.2. Finally, in Section 5.3, we present
some of the results obtained on application of the modified robust MMPC
algorithm to the realistic air traffic data, outlining the necessary additional
assumptions and changes to the algorithms.

5.1 Recap of robust distributed MMPC

As detailed in [6], in its most basic form, the underlying protocol in dis-
tributed multiplexed MPC is that aircraft plan their future trajectories in a
predefined cyclic sequence, taking into account the plans of other aircraft.
Each aircraft involved in an encounter plans its own future trajectory, then
transmits its future plan to the other aircraft. The next aircraft in the
sequence does the same. In between updates, each aircraft executes distur-
bance feedback according to its planned policy until it is its next turn to
replan. The effect of disturbance feedback is to reduce the impact of the
future unknown disturbances. A centralised solution for aircraft initially en-
tering the scenario, assumed to be obtained from SWIM, is used to initialise
the distributed scheme.

Variants of the basic single aircraft update MMPC algorithm include
parallel optimisation variable update order MMPC (P-MMPC), introduced
in [6]. Here, aircraft optimise simultaneously in parallel, making the as-
sumption that other aircraft do not modify their plans from the previous
timestep. We examine the performance of this algorithm by comparison with
the single update MMPC formulation and a baseline disturbance feedback
controller on simulated scenarios.

To accommodate the evolving nature of the air traffic scenarios, that
is, aircraft continually entering and leaving the scenario, it is necessary to
make some changes to the basic MMPC algorithms presented previously
in [6]. We demonstrate this with results obtained on simulated scenarios
in which unanticipated aircraft enter a region containing existing aircraft
executing robust MMPC.
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5.2 Results on Simple Scenarios

We define the interest area used in our scenarios below: The area of interest
used in our scenarios was a rectangular region measuring 200x200 nauti-
cal miles. We first present a performance evaluation of the robust MMPC
schemes on closed scenarios, where all aircraft involved in a potential conflict
are identified in advance, and new aircraft do not enter the predetermined
region of interest. The performances of the single update order MMPC and
parallel optimisation variable update order MMPC (P-MMPC) algorithms
are compared against that of a baseline single shot disturbance feedback
MMPC controller. In execution of the baseline control, aircraft do not opti-
mise for their control moves; rather, they continue to apply their fixed dis-
turbance feedback policy obtained from the initial optimisation from SWIM.

The schemes are implemented within two scenario types involving 3 and
4 aircraft. We consider wind velocity distributions drawn from two distur-
bance distributions; a bounded uniform distribution with 2σ1-bounds, where
σ1 = 0.48m/s, and a Gaussian distribution with standard deviation σ1 . For
each MMPC scheme, results are obtained for 50 simulations for each of the
disturbance types, and each configuration of aircraft.

In our formulation, aircraft are required to reach their respect target re-
gions in finite time whilst maintaining safe separation. These target regions
are located on the boundary of the interest area and determined in advance.
The specific aircraft–target configurations considered are depicted in Figure
23, where closed loop trajectories obtained from application of single update
robust MMPC are plotted.

Tables 14 summarises the ensemble statistics obtained for each of the
three schemes for an example fixed configurations of three aircraft. The
means of the closed loop costs for each aircraft over the ensemble of 50
simulations for each disturbance setting are displayed for each scheme. The
infeasibility column displays the proportion of simulations in the ensemble
which were rendered infeasible, either for cases where the solver failed to
find a feasible solution or when constraints were violated. Tables 15 and
16 present statistics on the proportion of stages in a simulation in which
all aircraft execute parallel update in P-MMPC for fixed configurations of
3 and 4 aircraft. Recall that in P-MMPC, all aircraft optimise in parallel
and if the coupling constraints i.e. the minimum separation constraints for
the entire prediction horizon are satisfied, all aircraft update their policies
in parallel. The results in Tables 15 and 16 show that for most of the
time, aircraft update in parallel, and in some simulations, aircraft execute
parallel update at every time step. This shows that when the schemes
have been initialised with an optimal solution, the separation constraints
along the prediction horizon at subsequent time steps are mostly not active.
This can be attributed to the low levels of the stochastic component of the
disturbances compared with the nominal speeds of the aircraft; for most of
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Figure 23: Sample trajectories obtained with single update robust MMPC.
Crosses are plotted at 1 minute intervals, and the target regions are depicted
as squares.
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the time aircraft are following the initial optimal solution. This is supported
by the observation that the closed loop costs obtained with the two MMPC
schemes are identical to those associated with the single-shot disturbance
rejection controller.

Table 14 summarises the results obtained for an example configuration.
The closed loop costs associated with each aircraft are shown. The infea-
sibility column displays the proportion of simulations which were rendered
infeasible, either for cases where the solver failed to find a feasible solution
or when constraints were violated. The benefit of parallel updating is appar-
ent at the higher disturbance levels, where the proportion of infeasibilities
is almost half that of the MMPC1 scheme. The benefit is more apparent
for the 4 agent case, which is to be expected as there are more constraints
to be violated, and additionally, in MMPC1, the proportion of time where
the agent applies disturbance feedback is higher; It can be seen that the
closed loop costs obtained are identical to the single-shot disturbance re-
jection controller. This is unsurprising, as the stochastic component of the
disturbances acting on the system is very low relative to the nominal speeds;
consequently the initial solution fixes the subsequent optimisations, as the
subsequent solutions merely track the initial solution. The benefits of par-
allel update are not apparent for the typical disturbance levels present. The
closed loop cost is not a true indicator of performance as the measure only
corresponds to those simulations that were feasible.

In practice of course, the regions of interest are not fixed, as the aircraft
alert zones are time-varying. It is therefore important to address the issue of
how to deal with interaction of neighbouring scenarios. We now examine by
simulation the robustness of the MMPC methods developed to uncertainty
in the form of unanticipated aircraft entering the conflict zone. When two
groups of aircraft meet, the aircraft originally contained in the interest area
are referred to as the ‘original’ group, with higher priority, whilst those
joining the interest area are known as the ‘newcomers’. The trajectories of
the newcomers are constrained by the plans of the original group. Although
we do not detail here a method for identifying the original and new groups,
heuristics for doing so can be imagined.

Figure 24 shows the results obtained with a scenario in which two new
aircraft enter a region of interest. The original three aircraft involved in the
initial encounter are initialised on the left side of the boundary of the region
of interest and are required to reach their target regions located on the right
hand side. They update their plans in the cyclic sequence {1, 2, 3} using
prediction horizons of length 30 mins and predicted time to collision roughly
20 minutes, unaware that a fourth and fifth aircraft flying East-West at 454
knots will enter the region of interest after 15 minutes. The new aircraft
are not aware of the original two aircraft in the region of interest until the
point at which they enter the region. Figure 24a shows the trajectories
of the original aircraft up to, but not including time k = 15, displayed as
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Disturbance

MMPC type
MMPC 1 P- MMPC Single Shot
Closed Loop Cost % Closed Loop Cost % Closed Loop Cost %
Agent 1 Agent 2 Agent 3 Infeasible Agent 1 Agent 2 Agent 3 Infeasible Agent 1 Agent 2 Agent 3 Infeasible

Uniform 3-σ1 15.0 12.0 12.0 0 15.0 12.0 12.0 0 15.0 12.0 12.0 0
Gaussian σ1 15.0 12.0 12.0 0 15.0 12.0 12.0 2.0 15.0 12.0 12.0 2.2

Table 14: Comparison of closed loop costs of 3 agents , configuration (23a)
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Disturbance Type
Statistics summarising % of time steps with simultaneous agent update
Mean Maximum Minimum

Uniform 3-σ1 0.99 1 0.92

Gaussian σ1 0.98 1 0.85

Table 15: Parallel Optimisation Variable Update Order (P-MMPC) 3 agents

Disturbance Type
Statistics summarising % of time steps with simultaneous agent update
Mean Maximum Minimum

Uniform 3-σ1 0.98 1 0.77

Gaussian σ1 0.97 1 0.85

Table 16: Parallel Optimisation Variable Update Order (P-MMPC) 4 agents

crosses plotted at one minute intervals. The open loop predicted trajectories
of the new aircraft when they appear at the boundary of the region are
displayed as circles. Whilst these solutions satisfy the local and coupled
collision avoidance constraints of the new aircraft, loss of separation with
the original aircraft would occur without corrective action. The aircraft
contained originally in the region of interest are termed ’high priority’, as
their predicted trajectories constrain those of the incoming ’low priority’
aircraft.

On entry to the region of interest, aircraft 4 optimises for a sequence
of moves, its optimisation constrained by disturbance feedback perturbed
predicted plans of all the other aircraft in the scenario. Aircraft 5 then does
the same at the next timestep, and it can be seen from Figure 24b, which
shows the closed loop trajectories of all aircraft, that it has to deviate from
its originally planned trajectory to accommodate the plans of the original
aircraft. Figure 24c shows the increase in the open loop cost of aircraft 5
incurred on solving the more constrained problem. Once a round of reup-
dating of the new aircraft has occurred, and feasible solutions are obtained,
their open loop costs decrease monotonically and feasibility is retained when
bounded disturbances are applied. Figure 24d displays the ground speeds
of both sets of aircraft, and it can be seen the constraints on the speed are
respected at all time.

The entry of the new aircraft constrains the actions of the original aircraft
in subsequent optimisations, and increases the cycle length from 3 minutes
to 5 minutes, and thus disturbance feedback is applied 80% of the time,
compared to 67%.

Having demonstrated the flexibility of the robust MMPC algorithm for
handling scenarios in which unexpected aircraft enter on a simple example,
we now turn our attention to handling more realistic settings with realistic
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Figure 24: Interacting Scenarios: 2 aircraft entering a region of interest
containing 3 aircraft after 10 minutes.
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traffic data.

5.3 Application to Realistic Traffic Scenarios

Details of the realistic traffic scenario data have already been given in Sec-
tion 2. For the evaluation of the robust MMPC algorithms in this section,
we consider a subset of the data previously considered, specifically flights
entering a region of area 200nm×200nm centred on Zurich over the 24 hour
period. As with the flight data used in the previous sections, the entry
points of flights which do not originate within the interest area are de-
termined from extrapolating straight line trajectories from the departure
airports. The centres of the exit target regions are similarly obtained.

With a view to keeping the sizes of the optimisation problems manage-
able, we consider only flights at level 330. Whilst in principle the entire 48
hours of data can be simulated in sequence, we split the data into 1 hour
slots. The data is divided further into groups according to the flight head-
ing angle quadrant; between North and East (N–E), with a heading angle
of 0◦ − 90◦, E–S (90 − 180◦), S–W (180 − 270◦) and W–N (270◦ − 360◦).
This gives rise to a total of 192 scenarios. Some further preprocessing of the
data is required to achieve feasible initial conditions since multiple aircraft
were found to be starting from the same destination at the same time. In
such cases, the flights were artificially separated by 80s, corresponding to a
separation of 12nm.

Employing a fully distributed solution in which aircraft solve selfishly for
their individual trajectories as they arrive without accounting for aircraft
yet to appear may lead to infeasibilities, particularly in dense traffic scenar-
ios. However, obtaining a global centralised solution for all aircraft every
time new aircraft appear could potentially incur significant computational
cost. We therefore propose dividing up the data to obtain smaller, compu-
tationally tractable problems and employ a formulation which is partially
centralised and partially distributed. Specifically, the idea is to obtain joint
solutions for cooperating groups of aircraft at predetermined time intervals,
with fully distributed MMPC being executed in between joint updates. The
cooperating set of aircraft includes those entering the scenario at the time of
optimisation, and those predicted to enter within some sensing time horizon.
The joint solution of the cooperating group of aircraft is constrained by the
planned trajectories of those already present in the region of interest.

In our algorithm formulation, the prediction horizon used by each air-
craft is required to be long enough for the target destination to be reached
within the planning interval. The length is estimated by scaling the time
corresponding to a constant cruising speed straight line trajectory by some
factor greater than 1. When obtaining a joint solution for a cooperating
group, the prediction horizons of the aircraft must be combined to accommo-
date possible interactions of aircraft with those yet to arrive. Consequently,
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the inclusion of a new aircraft in the cooperating set potentially increases
the prediction horizon used when solving for the group. Thus to prevent the
size of the optimisation problem becoming prohibitively large, we restrict
the look ahead for sensing new aircraft to be 5 minutes, whilst the planning
horizons employed are in the order of tens of minutes. A cooperative joint
solution is required to initialise the scheme. Subsequent cooperative joint
optimisations are solved on arrival of aircraft for whom trajectories have
not been obtained at the previous joint optimisation time. As the aircraft
sensing interval is of length 5 minutes, these cooperative joint solutions are
obtained at intervals of at least 5 minutes. The fully distributed MMPC
optimisations take place every minute. The cycle time for the distributed
optimisations increases by one on the addition of every new aircraft to the
scenario. A full description of the algorithm is detailed in Algorithm 4 in
Appendix B.

We require the following assumptions for our problem formulation.:

Assumption 5.1 Aircraft are aware of the presence of all other aircraft
which are predicted to enter their region of interest considered within some
look-ahead interval, chosen to be 5 minutes in this work. Additionally, they
have access to their current states.

It is possible for aircraft in a cooperating group to still be present in the sce-
nario on arrival of aircraft from the next cooperating group. Consequently,
we require the use of Assumption 5.2 to ensure that the robust feasibility
and finite time completion guarantees hold.

Assumption 5.2 On entry of unanticipated incoming aircraft to the region
of interest, a feasible solution for all aircraft is available without the need
for reoptimisation of the trajectories of the original aircraft, who can adopt
candidate feasible plans based on their predicted plans made prior to the
entry of the new aircraft.

Assumption 5.3 The times of entry of aircraft to the region of interest
match the predictions exactly.

Whilst this assumption may appear to be overly restrictive, should this
assumption not be met, a number of possibilities for conflict resolution exist;
in the event that aircraft appear at times differing from those predicted, the
arriving aircraft must solve for their trajectories constraining their respective
optimisation problems by the plans of aircraft already present and those of
aircraft predicted to appear. If a feasible solution cannot be found this way,
a joint solution must be obtained for the entire group.

We present some of the results obtained next. We summarise results
obtained from scenarios with a minimum of 3 concurrent aircraft in Table
17. The open loop column contains results obtained in the absence of any
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Minimum Sep (nm) Open Loop Closed Loop

Mean 1.70 23.5
Maximum 32.7 46.4
Minimum 0.75 16.7

Completion Rate (%)

Mean 27.2 100
Maximum 80.0 100
Minimum 12.5 100

Table 17: Summary of statistics of all 40 feasible simulations with at least
3 concurrent aircraft in scenario

control action, with disturbances present. The aircraft are initialised with
headings and speeds obtained from the data set. The closed loop column dis-
plays results obtained on application of single aircraft update robust MMPC,
with an identical disturbance realisation acting on the system. Statistics on
the minimum separation obtained per scenario and the proportion of air-
craft reaching their target regions are displayed. It can be seen that in the
absence of control action, aircraft fail to reach their target regions within
the times taken by the aircraft executing MMPC. Moreover, the minimum
separation constraint of 5 nm is violated. As the aircraft trajectories com-
prise discrete sequences of positions, an offset corresponding to the largest
distance that can be travelled in a discretisation time step is added; the
nominal minimum separation distance was increased from 5 to 12.5nm. The
minimum separations obtained with MMPC are in excess of this, indicating
the conservatism of the constraint tightening employed.

We next present results from individual scenarios including those iden-
tified as being the most challenging scenarios for which it was possible to
obtain results, and scenarios with flight routes in each of the 4 directions.
The direction of flight route information and time slot corresponding to each
scenario is presented in Table 18.

Table 19 summarises results obtained on each of the six scenarios se-
lected. The performance metrics are obtained for each of the scenarios with
closed loop control (robust MMPC) and compared with those obtained with
open loop control (no control action) and as previously, identical distur-
bance realisations act on the system. To give an indication of the sizes of
the problems, we show the maximum prediction horizons employed and the
maximum number of aircraft in a cooperating set. The maximum number
of aircraft for which it was possible to obtain a joint solution was found to
be around 5, with a corresponding maximal prediction horizon of around 50
minutes ( with a sampling time of 1 minute). The numbers of cooperating
sets in each scenario, and hence the number of joint optimisations performed
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Scenario Flight Heading Direction Time Slot

(i) N–E 1267-1327 mins
(ii) N–E 1322-1382 mins
(iii) N–E 1444-1504 mins
(iv) W–N 845-905 mins
(v) S–W 1264-1324 mins
(vi) E–S 1094-1154 mins

Table 18: Scenario Description: The second column gives the route direction,
and the third column shows the time slots corresponding to each scenario,
in minutes after midnight.

are given in the final row.
Figure 25 shows the evolution of the number of aircraft present in the

region of interest over time for the selected scenarios (i)–(vi)). It can be
seen that scenarios with up to 11 concurrent aircraft can be handled.

The distributions of minimum separation distances in each of the scenar-
ios are shown in Figure 26. In each of the six cases, the minimum separation
distance is in excess of the 5 nm requirement.

Sample trajectories obtained in the selected scenarios for selected time
windows are plotted in Figure 27.

5.3.1 Summary

We have demonstrated the capability of distributed robust MMPC in per-
forming conflict resolution in mid term air traffic scenarios. Results have
been obtained on both simple scenarios. We have adapted the algorithms
for interacting scenarios by periodically obtaining joint solutions for cooper-
ating sets of aircraft and employing a heuristic for determining the aircraft
included in the optimisation problems. Solutions have been obtained for
scenarios with prediction horizons of up to around 50 minutes, where the
cooperating groups in the joint optimisations have up to about 5 aircraft.
Whilst results have not been obtained with the predicted 2035 traffic lev-
els, the algorithm has successfully been executed with densities of up to
11 concurrent aircraft in the scenario. Despite the fewer formal guarantees
associated with the original distributed robust MMPC algorithm, it is ob-
served in simulation that the minimum separation constraints are respected
in the optimisations that are feasible. The minimum separations obtained
are in excess of the safe separation bound of 5nm, even with the inclusion
of an offset to allow for discretisation effects, indicating conservatism of the
constraint tightening employed in the robust MMPC.
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Scenario (i) Scenario (ii) Scenario (iii) Scenario (iv) Scenario (v) Scenario (vi)
O/L C/L O/L C/L O/L C/L O/L C/L O/L C/L O/L C/L

Minimum Separation (nm) 0.75 17.0 0.75 19.6 0.75 17.6 0.75 32.1 0.75 16.7 0.75 17.7
Completion Rate (%) 27.2 100 33.3 100 25.9 100 33.3 100 41.7 100 80 100
Total number of aircraft 11 12 27 6 24 15
Maximum no. of concurrent aircraft – 5 – 5 – 11 – 3 – 10 – 4
Maximum prediction horizon (mins) – 50 – 50 – 52 – 46 – 50 – 54
Maximum size of cooperating set – 4 – 2 – 5 – 2 – 5 – 4
Number of cooperating sets – 6 – 7 – 8 – 5 – 6 – 6

Table 19: Summary of results on individual scenarios (i)–(vi).
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Figure 25: Variation in number of aircraft present in scenario over time for
scenarios (i)-(vi).
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Figure 26: Distribution of minimum separation obtained for scenarios (i)-
(vi). The minimum separation bound is shown in red.
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Figure 27: Aircraft trajectories from selected time windows from scenarios
(i),(v) and (vi) .
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6 Concluding remarks

After a careful review of available CD&R methods carried out in deliverable
D5.1 [5], the most relevant methods for the A3 concept were identified in
D5.2 [11]. Those methods were chosen based on their performance and their
potential for use in the iFly project. They were further developed within
WP5 and one algorithm for Short-term CD&R as well as two candidate
algorithms for Mid-term CD&R have been validated in this deliverable. The
finalised algorithms have been presented in detail in [6], along with some
initial simulation results on test scenarios. In this report the main validation
results for the proposed CD&R solutions are presented. In order to assess
the performance of the algorithms, air traffic data from a realistic traffic
sample have been used.

For the Short-term level, Decentralised Navigation Functions (NFs) have
been used to handle CD&R in a fast real-time feedback manner. The sim-
ulation results show that the algorithm resolved all conflicts while being
computationally efficient for real-time application and requiring little in-
crease in the overall flown distance, despite the fact that no optimization
was performed.

For the Mid-term level two different approaches based on the MPC
methodology have been developed and used in the simulations. The first
one, prioritized MPC has been developed based on the priority requirements
of the ConOps, defined in D1.3 [7], while the second one aims to provide for-
mal guarantees for the completion time of the aircraft flight plans, utilizing
disturbance feedback. They have both been tested in simple test scenarios,
in order to tune their parameters and then, have been shown to provide
conflict-free trajectories when tested with realistic traffic data. In the case
of prioritized MPC, a more demanding traffic has been simulated, ignor-
ing the effects of uncertainty to match with the computational capabilities
available at the time of the simulations. In the second alternative, a smaller
part of the traffic sample was tested, taking uncertainties into consideration
and providing formal guarantees against uncertainty for the traffic sample.
Both algorithms have demonstrated a potential to operate under high traffic
densities. The results clearly demonstrate a big potential for their use in
autonomous aircraft situations. Unsolved problems that previously devel-
oped methods in literature faced, like identifying the conflicting situations
efficiently and dynamically clustering the airspace to reduce computational
complexity and handle high traffic densities have been resolved in this work
package. Furthermore, a systematic way to address the issue of priorities
that previously did not exist in literature has been developed.

For each algorithm suitable metrics have been used to evaluate the re-
sults, according to the characteristics and goals that are inherrent to each
approach. Although not all algorithms use the same models, making a direct
comparison of the methods, the overall results presented in this concluding
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report of WP5 indicate that there is promising potential in the concept
of decentralised CD&R, both for the Short-term and Mid-term levels. The
fact that the two levels operate independently suggests that in an integrated
CD&R system the overall benefits can be further improved, exploiting the
performance attained by the MPC supported by the formal guarantees of
NFs for those few conflicts that escape the Mid-term algorithm. An initial
study to examine and exploit the use of algorithms running in different time
scales at the same time (Mid and Short term) has been carried out in D5.3
[6].

The ability of the algorithms developed in WP5 to cope with the realistic
traffic data suggests that decentralisation of SA in future ATM designs is a
viable option to the centralised approach used today and should be exploited
further. Issues that have been raised because of the computational limits of
available equipment at the time of the simulations is unlikely to exist at the
time of the application of the algorithms using future computational power.

Directions for further developement of NF-based aircraft CD&R have
been suggested in Section 3.3. Research on the prioritized MPC algorithm
in the future can focus on several different aspects. First, a 3D algorithm
in order to extend its capability to complete 3D maneuvers should be in-
vestigated to reduce fuel consumption. Furthermore, the issue of optimally
assigning aircraft to different flight levels has not been studied in detail. Fi-
nally, exploration towards obtaining better decentralization schemes, taking
into account communication delays should be carried out in the future.
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A Prioritized Conflict Resolution

Consider I aircraft flying within an area of interest. The continuous-time
dynamics for level flight cruise, using are:

Q̇i =

˙
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Vi
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mi









=










Vi cos(ψi) +Wi1

Vi sin(ψi) +Wi2

−
CDi

Siρ

2
V 2
i

mi
+ 1

mi
Ti

CLi
Siρ

2
Vi

mi
sin(φi)

−ηiTi










(1)

for i ∈ I , {1, · · · , I}. In this equation, Xi, Yi denote the horizontal position
of the aircraft, Vi the airspeed, ψi the heading angle, mi the mass, Wi1,Wi2

the wind velocity, CDi
, CLi

are aerodynamic lift and drag coefficients, Si
denotes the surface of the wings, ρ is the air density, ηi is a parameter that
represents the rate at which fuel is consumed, Ti is the engine thrust and φi
the bank angle.

The Conflict Resolution (CR) problem can then be described as the
optimal control problem that determines the optimal (corresponding to some
desired cost function) inputs Ti, φi for all aircraft i ∈ I such that they respect
the following two sets of constraints:

• Velocity and acceleration constraints. Aerodynamic reasons impose
some physical constraints on the minimum and maximum TAS an air-
craft can fly at each altitude. Furthermore, passenger comfort, as well
as other human factors reasons impose constraints on the accelera-
tion and the turning rate. Those constraints can be expressed in the
following form:

vmax ≥ Vi(t) ≥ vmin

V̇i(t) ≤ δV

ψ̇i(t) ≤ δψ

(2)

• Conflict avoidance constraints. All aircraft should remain separated
at all times, by at least a minimum distance ∆, which is typically set
to ∆ = 5nm for cruising altitudes. Those constraints can be encoded
as: ∥

∥
∥
∥

[
Xi

Yi

]

(t)−

[
Xj

Yj

]

(t)

∥
∥
∥
∥
2

≥ ∆ (3)

for all times t ≥ 0 and for all aircraft pairs i 6= j, where (i, j) ∈ I.

• Priority constraints. Given a bijective priority function s : I → I,
each aircraft i ∈ I is assigned a priority s(i). Since the function s(·)
is bijective, the priority ordering is unique. The priority concept used
enforces the constraint that aircraft i will maneuver if (and only if)
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all aircraft j : s(j) < s(i) cannot satisfy constraints (3), (2) without
aircraft i maneuvering.

The problem described cannot be modeled as a tractable optimization
problem, irrespective of the cost function chosen due to the complexity of
the nonlinear dynamic constraint (1). In order to be able to resolve it, a
series of approximations that allow us to formulate the problem as a MILP
is developed. Even though the resulting optimization problem is still NP-
hard, instances of realistic size in the ATM context are readily solvable by
commercially available computational tools.

A.1 Centralized Formulation

The problem is modeled as a two-level hierarchical algorithm. At the highest
level, a centralized MPC problem with simplified dynamics is solved, taking
into account all constraints and generating an optimal set of inputs for
each aircraft over a certain prediction horizon N . Once the optimal input
sequences have been generated for all aircraft, they are pushed down to
the lower level in the hierarchy, namely the Flight Management System
(FMS). The FMS generates the appropriate inputs to be applied through
the autopilot on the actual aircraft dynamics. The optimization problem is
then resolved periodically and applied in a receding horizon fashion. This
setup is illustrated in Figure 28.

Figure 28: Hierarchical Multi-Level System

Subsequently, a step by step construction of the problem will be detailed.
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A.1.1 Dynamical constraints

The dynamics (1) are abstracted to a linear discrete-time model, based on
single integrator dynamics, as follows:

pi(t+ 1) = pi(t) + hui(t) + hwi(t), (4)

where pi(t) ,
[
xi(t) yi(t)

]T
denotes the aircraft position, wi(t) =

[
wx
i (t) wy

i (t)
]T

denotes the wind uncertainty, ui(t) =
[
uxi (t) uyi (t)

]T
is the velocity input,

h is the sampling period (lower case letters are used to distinguish between
the nonlinear and the simplified dynamics) and t ∈ {0, · · · , N − 1}. Fur-
thermore, the nominal dynamics, computed using an ideal straight flight at
nominal speed from the current point to the destination pdi in the absence
of wind are denoted by

p̄i(t+ 1) = p̄i(t) + hunomi (t), (5)

where unomi (t) =

[
V nom
i cosψnom

i

V nom
i sinψnom

i

]

.

A.1.2 Velocity and acceleration constraints

Another important factor to consider is the dynamical constraints that air-
craft have on their airspeed, their acceleration, as well as their turning rate.
Using the simplified dynamics (4), the constraints (2) are approximated by:

[
cosψnom

i sinψnom
i

]
ui(t) ≥ umin

‖ui(t)‖∞ ≤ umax

‖ui(t)− ui(t− 1)‖∞ ≤ δu

(6)

for all t ∈ {0, · · · , N−1}, where the convention ui(−1) =
[
V cur
i cosψcur

i V cur
i sinψcur

i

]T

is used, with V cur
i and ψcur

i denoting the current speed and heading of the
aircraft. The lower constraint on the speed is thus, conservatively approx-
imated by a linear constraint, while the upper one is relaxed into an outer
∞-norm constraint. Similarly, the 2-norm acceleration as well as the turning
rate constraint, are both substituted by a single∞-norm one. The resulting
constraints are linear, simplifying the optimization process. Alternatively,
the lower constraint could be implemented with a less restrictive 1-norm, as
in [4], where also 4 binary variables together with a linear equality would
have to be introduced. The norm constraints can be further refined using
polytopic norms at the expense of the increase of the number of resulting
constraints, and thus, more computational effort.
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A.1.3 Cost and priority constraints

As discussed, not all aircraft are considered to have equal priorities. Inspired
by the concept of operations proposed by the iFly project [7], higher prior-
ity aircraft will not deviate from their flight plan, unless all lower priority
aircraft cannot resolve the conflict without them deviating. Recall that each
aircraft i ∈ I is assigned a priority s(i), that takes values in {1, · · · , I}; the
aircraft with priority s(i) = I has the highest priority. Guided by the setup
in [12], define I binary variables δ1, · · · , δI , one for each aircraft. Given the
nominal input sequence unomi (t) for t ∈ {0, · · · , N − 1}, define the following
set of deviation constraints corresponding to the i-th aircraft:

‖ui(t)− u
nom
i (t)‖∞ ≤ ǫi(t)

0 ≤ ǫi(t) ≤Mǫδi,
(7)

for all t ∈ {0, · · · , N − 1} where Mǫ is a finite constant. The constraint
(7) penalizes any deviation from the trajectory generated by (5) due to
the designed control inputs away from the nominal control input sequence.
Given the optimization horizon N , the cost is defined as:

J =

I∑

i=1

∥
∥
[
ǫi(0) ǫi(1) · · · ǫi(N − 1)

]∥
∥
1

︸ ︷︷ ︸

deviation from nominal

+β

I∑

i=1

2s(i)−1δi

︸ ︷︷ ︸

priorities

, (8)

where β is a positive scalar given by β = (I − 1)NMǫ + 1. This choice
of β ensures that the priorities part of the cost dominates the deviation
from nominal part. Thus, if a deviation occurs, the binary variable δi is set
to one and results in a higher cost. Moreover, given the specific structure
of weighting, the various binary variables ensure that the satisfaction of
higher priority constraints always results in a lower cost than any possible
combination of the lower priority constraints. In the air-traffic problem,
this would mean that a higher priority aircraft will deviate from its nominal
flight plan only if all other aircraft with lower priority cannot resolve the
conflict.

A.1.4 Separation constraints

It is important that the formulation is robust against wind, so that conflicts
do not occur even in the case of strong winds. In general, wind is normally
distributed and thus, has unbounded support, making a robust formulation
against all possible noise realizations impossible. Instead, a confidence in-
terval of the noise will be chosen against which the problem will be made
robust. A “safe” choice would be to choose the 99.7% confidence interval,
which corresponds to making the formulation robust against all winds that
lie within the [−3σ, 3σ] interval, where σ is the standard deviation of the
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wind used in the model. This can be done using existing tools and ap-
proaches for robust programming, like [16] that is implemented in YALMIP
[14].

In order to maintain separation between aircraft, constraints of the fol-
lowing form have to be enforced:

‖pi(t)− pj(t)‖2 ≥ ∆, (9)

for all t ∈ {0, · · · , N}, wx
i (t), w

y
i (t), w

x
j (t), w

y
j (t) ∈ [−3σ, 3σ] and i, j ∈ I with

i 6= j. The constraint described by (9) is not convex and, in order to be
able to handle it computationally, it is tightened, using the norm inequality
‖·‖2 ≥ ‖·‖∞ to:

‖pi(t)− pj(t)‖∞ ≥ ∆. (10)

Then, using the so-called big-M technique (similar to the formulation in
[18]) the equation (10) can be written as:

xi(t)− xj(t) ≥ ∆−Md1i,j(t)

xi(t)− xj(t) ≤ −∆+Md2i,j(t)

yi(t)− yj(t) ≥ ∆−Md3i,j(t)

yi(t)− yj(t) ≤ −∆+Md4i,j(t)

4∑

ν=1

dνi,j(t) ≤ 3, dνi,j(t) ∈ {0, 1}

(11)

for all t ∈ {0, · · · , N}, wx
i (t), w

y
i (t), w

x
j (t), w

y
j (t) ∈ [−3σ, 3σ] and i, j ∈ I with

i 6= j, where M is a sufficiently large number. The last constraint ensures
that at least one of the inequality constraints is active, and consequently
that the two aircraft are separated by the required distance along at least
one of the axes.

Unlike the original constraints (3), constraints (12) are not enforced at
all times, but only at sampled instances. In order to maintain the separation
even between those instances, it has to be ensured that if some of the binaries
dνi,j(t) and d

ν
i,j(t+ 1) are different, no conflict has taken place in the mean-

time. This can either be ensured by enforcing the constraints more often (at
the expense of introducing more variables) or by not allowing dνi,j(t+ 1) to
be different from dνi,j(t) in a way that the maintenance of separation in the
meantime is compromised (at the expense of conservativeness).

A.1.5 Constraint relaxation

Because of the model mismatch between the actual nonlinear model and
the simplified linear one, as well as because of the fact that the tails of the
wind error distribution are ignored, it is likely that aircraft find themselves
in a situation where a feasible solution no longer exists. It is nevertheless
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important that even in such a situation, the algorithm provides aircraft with
a solution, in order to avoid an actual collision. In such a configuration,
aircraft should try to return as soon as possible to a feasible configuration,
rather than continuing to fly in a potentially unsafe configuration optimizing
over usual criteria.

This can in fact be dealt with systematically, though the introduction of
N+1 more binary variables, δr(t), t ∈ {0, · · · , N}, in a similar fashion to the
priority binaries, but incurring a higher cost and allowing their actuation
only to incur when otherwise the situation would remain infeasible. In this
case, the separation constraints (12) become:

xi(t)− xj(t) ≥ ∆− rij(t)−Md1i,j(t)

xi(t)− xj(t) ≤ −∆+ rij(t) +Md2i,j(t)

yi(t)− yj(t) ≥ ∆− rij(t)−Md3i,j(t)

yi(t)− yj(t) ≤ −∆+ rij(t) +Md4i,j(t)

4∑

ν=1

dνi,j(t) ≤ 3, dνi,j(t) ∈ {0, 1}

0 ≤ rij(t) ≤Mrδr(t), δr(t) ∈ {0, 1}

(12)

for all t ∈ {0, · · · , N}, wx
i (t), w

y
i (t), w

x
j (t), w

y
j (t) ∈ [−3σ, 3σ] and i, j ∈ I

with i 6= j, where Mr is the maximum allowed constraint relaxation.
Using this approach, the cost (8) is then modified to:

J =

I∑

i=1

∥
∥
[
ǫi(0) ǫi(1) · · · ǫi(N − 1)

]∥
∥
1

︸ ︷︷ ︸

deviation from nominal

+β

I∑

i=1

2s(i)−1δi

︸ ︷︷ ︸

priorities

+

βr

N∑

t=0

I∑

i=1

I∑

j=i+1

rij(t) + βδr

N∑

t=0

2I+N−tδr(t)

︸ ︷︷ ︸

constraint relaxation

,

(13)

where βr is a positive scalar that weighs the amount by which the constraints
are relaxed and βδr is chosen such that the relaxation of constraints part
of the cost dominates the deviation from nominal and the priorities part.
Furthermore, if the constraints are to be relaxed, this happens again in a
prioritized fashion, first allowing constraints at the end of the horizon to be
relaxed (as it is highly likely that what is considered as worst-case by the
algorithm will not arise) and the ones at the beginning are the last to relax.

A.1.6 Wind correlation modeling

Wind uncertainty modeled in the simulator is correlated in time and space.
It would be important to examine whether this structure is important in
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this formulation. As aircraft that are likely to involve in a conflict fly close
to each other, it is expected that using the spatial correlation structure of
the wind, the algorithm may produce less conservative resolutions, allowing
better use of the available airspace.

The spatial correlation of the wind field on the horizontal plane can be
described by the following equation:

ρxy
(
‖pi(t)− pj(t)‖2

)
= −0.006 + 1.006e−

‖pi(t)−pj (t)‖2
337000 , (14)

where ‖pi(t)− pj(t)‖2 is the horizontal separation in meters between the two
aircraft i, j. Utilizing (14), the differences in the wind speeds experienced
by the two aircraft along the two axes in (21) can be expressed as normally
distributed variables:

(wx
i (t)− w

x
j (t)) ∼ N(0, σi,j(t))

(wy
i (t)− w

y
j (t)) ∼ N(0, σi,j(t)),

(15)

where

σi,j(t) = σ
√

2− 2ρxy
(
‖pi(t)− pj(t)‖2

)
. (16)

Since σi,j(t) depends in a non-convex fashion on the inputs via the dy-
namics (4), using this exact constraint is not possible. Instead, we use

σ̄i,j(t) = σ
√

2− 2ρxy(‖p̄i(t)− p̄j(t)‖2 + htδv), (17)

where ‖p̄i(t)− p̄j(t)‖2 is the distance that the aircraft would have, had fol-
lowed their nominal flight plans, and δv is a constant related to the max-
imum change of the airspeed magnitude at each step. In a similar fashion
as before, assuming that the differences in the wind speeds lie in the 99.7%
confidence interval, and using (17), the constraints (10) can be rewritten as:

∥
∥
∥
∥
∥
pi(0)− pj(0) + h

t−1∑

τ=0

(ui(τ)− uj(τ) + wi(τ)− wj(τ))

∥
∥
∥
∥
∥
∞

≥ ∆ (18)

which, using the triangle inequality becomes:

∥
∥
∥
∥
∥
pi(0) − pj(0) + h

t−1∑

τ=0

(ui(τ)− uj(τ))

∥
∥
∥
∥
∥
∞

≥ ∆+ h

∥
∥
∥
∥
∥

t−1∑

τ=0

(wi(τ)− wj(τ))

∥
∥
∥
∥
∥
∞

(19)
which is then approximated by

∥
∥
∥
∥
∥
pi(0)− pj(0) + h

t−1∑

τ=0

(ui(τ)− uj(τ))

∥
∥
∥
∥
∥
∞

≥ ∆+ h

t−1∑

τ=0

3σ̄i,j(τ). (20)
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Finally, coming back to (12), the constraints can be rewritten as:

xi(0)− xj(0) + h

t−1∑

τ=0

(
uxi (τ)− u

x
j (τ)

)
≥ ∆+ h

t−1∑

τ=0

3σ̄i,j(τ)− rij(t)−Md1i,j(t)

xi(0)− xj(0) + h

t−1∑

τ=0

(
uxi (τ)− u

x
j (τ)

)
≤ −∆− h

t−1∑

τ=0

3σ̄i,j(τ) + rij(t) +Md2i,j(t)

yi(0)− yj(0) + h
t−1∑

τ=0

(

uyi (τ)− u
y
j (τ)

)

≥ ∆+ h
t−1∑

τ=0

3σ̄i,j(τ)− rij(t)−Md3i,j(t)

yi(0)− yj(0) + h
t−1∑

τ=0

(

uyi (τ)− u
y
j (τ)

)

≤ −∆− h
t−1∑

τ=0

3σ̄i,j(τ) + rij(t) +Md4i,j(t)

4∑

ν=1

dνi,j(t) ≤ 3, dνi,j(t) ∈ {0, 1}

0 ≤ rij(t) ≤Mrδr(t), δr(t) ∈ {0, 1},
(21)

for all t ∈ {0, · · · , N} and i, j ∈ I with i 6= j.

A.1.7 Enforcement of inter-sample constraints

To make sure that the separation is not violated, the separation constraints
have to be enforced at least as often as the time needed for the difference
on the coordinates on one axis to go from −∆ to ∆. The fastest this could
happen occurs when aircraft are flying on opposite directions and the time
needed for this to happen depends on their maximum allowed speed. As-
suming a maximum allowed speed of 300m/s, which covers all aircraft that
will be considered in this study, one can deduce that the constraints should
be enforced at least every around 30sec. This is rather small to be used
as a time step for the MPC approach (which is usually around 3-5mins),
and thus, additional constraints have to be introduced and enforced. This is
done by taking between any two time samples t and t+1 L further samples
at times

{
t+ 1

L
, t+ 2

L
, · · · t+ L−1

L

}
on which the separation constraints are

applied, i.e. the satisfaction of the following set of constraints is required,
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additionally to (12):

(xi(t)− xj(t)) +
hl

L

(
uxi (t)− u

x
j (t) + wx

i (t)− w
x
j (t)

)
≥ ∆− rij(t)−Md1i,j(t, l)

(xi(t)− xj(t)) +
hl

L

(
uxi (t)− u

x
j (t) + wx

i (t)− w
x
j (t)

)
≤ −∆+ rij(t) +Md2i,j(t, l)

(yi(t)− yj(t)) +
hl

L

(

uyi (t)− u
y
j (t) +wy

i (t)− w
y
j (t)

)

≥ ∆− rij(t)−Md3i,j(t, l)

(yi(t)− yj(t)) +
hl

L

(

uyi (t)− u
y
j (t) +wy

i (t)− w
y
j (t)

)

≤ −∆+ rij(t) +Md4i,j(t, l)

4∑

ν=1

dνi,j(t, l) ≤ 3, dνi,j(t, l) ∈ {0, 1}

0 ≤ rij(t) ≤Mrδr(t), δr(t) ∈ {0, 1}
(22)

for all t ∈ {0, · · · , N−1}, wx
i (t), w

y
i (t), w

x
j (t), w

y
j (t) ∈ [−3σ, 3σ], i, j ∈ I with

i 6= j and l ∈ {1, . . . , L − 1}. As it can be understood by the formulation,
in such a setup the number of binaries needed to enforce the separation are
L times more than before.

Similarly, taking into account the correlation as described before, addi-
tionally to the constraints (21), the following constraints should be enforced:

exi,j(t, l) = (xi(0) − xj(0)) + h

t−1∑

τ=0

(
uxi (τ)− u

x
j (τ)

)
+
hl

L

(
uxi (t)− u

x
j (t)

)

eyi,j(t, l) = (yi(0)− yj(0)) + h
t−1∑

τ=0

(
uxi (τ)− u

x
j (τ)

)
+
hl

L

(

uyi (t)− u
y
j (t)

)

exi,j(t, l) ≥ ∆+ h
t−1∑

τ=0

3σ̄i,j(τ) + 3
hl

L
σ̄i,j(t)− rij(t)−Md1i,j(t, l)

exi,j(t, l) ≤ −∆− h

t−1∑

τ=0

3σ̄i,j(τ)− 3
hl

L
σ̄i,j(t) + rij(t) +Md2i,j(t, l)

eyi,j(t, l) ≥ ∆+ h

t−1∑

τ=0

3σ̄i,j(τ) + 3
hl

L
σ̄i,j(t)− rij(t)−Md3i,j(t, l)

eyi,j(t, l) ≤ −∆− h

t−1∑

τ=0

3σ̄i,j(τ)− 3
hl

L
σ̄i,j(t) + rij(t) +Md4i,j(t, l)

4∑

ν=1

dνi,j(t, l) ≤ 3, dνi,j(t, l) ∈ {0, 1}

0 ≤ rij(t) ≤Mrδr(t), δr(t) ∈ {0, 1}
(23)
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for all t ∈ {0, · · · , N − 1}, wx
i (t), w

y
i (t), w

x
j (t), w

y
j (t) ∈ [−3σ, 3σ], i, j ∈ I

with i 6= j and l ∈ {1, . . . , L− 1}.

A.1.8 Enforcement of constraints only on sample points

In this case, to ensure that a conflict does not occur within this the inter-
sample time, the binaries need to be constrained such that at least on one of
the axes both binaries remain unchanged (so that at least in this direction
the separation is maintained at all times). This can be expressed as:

∥
∥
∥
∥

d1i,j(t+ 1)− d1i,j(t)

d2i,j(t+ 1)− d2i,j(t)

∥
∥
∥
∥
∞

+

∥
∥
∥
∥

d3i,j(t+ 1)− d3i,j(t)

d4i,j(t+ 1)− d4i,j(t)

∥
∥
∥
∥
∞

≤ 1 (24)

for all t ∈ {0, · · · , N − 1} and i, j ∈ I with i 6= j. In this setup, only one
linear constraint is added, making the approach much more efficient. On the
other hand, this is a more conservative approach, as it is shown in Section
4.5.

A.2 Feedback policies

It has been shown in literature [3, 2, 13, 9] that an affine parametrization of
control policies on the noise can be successfully used in robust MPC problem
formulations, pertaining the convex nature of the problem. It is also shown
that such an approach is equivalent to a (non-convex) affine parametrization
on the state, which is used in traditional control. In order to construct such
a policy, first the following compact form for the dynamical equations of
aircraft i is introduced:

P̄i = Āp(t) + B̄Ūi + D̄W̄i, (25)

where

P̄i ,








pi(t+ 1)
pi(t+ 2)

...
pi(t+N)







, Ūi ,








ui(t)
ui(t+ 1)

...
ui(t+N − 1)







, W̄i ,








wi(t)
wi(t+ 1)

...
wi(t+N − 1)







,

Ā ,














1 0
0 1
1 0
0 1
...

...
1 0
0 1














, B̄ = D̄ ,














h 0
0 h
h 0 h 0
0 h 0 h
...

. . .

h 0 · · · h 0 h 0
0 h · · · 0 h 0 h














.

Then, the introduction of feedback in the current formulation is straight-
forward and can be expressed with the following set of linear constraints:

Ūi = ηi +ΘiW̄i, (26)
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where

ηi ,















ηi,x
0

ηi,y
0

ηi,x
1

ηi,y
1

...

ηi,xN−1

ηi,yN−1















,Θi ,



















0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0

θi,x
1,0 0 0 0 · · · 0 0

0 θi,y
1,0 0 0 · · · 0 0

θi,x
2,0 0 θi,x

2,1 0 · · · 0 0

0 θi,y
2,0 0 θi,y

2,1 · · · 0 0
...

...
...

...
. . .

...
...

θi,xN−1,0 0 θi,xN−1,1 0 · · · θi,xN−1,N−2
0

0 θi,yN−1,0 0 θi,yN−1,1 · · · 0 θi,yN−1,N−2



















.

This formulation reduces the conservatism of the MPC algorithm, al-
lowing a more efficient utilization of the airspace. On the other hand, this
comes at a high computation cost, as shown in Section 4.5.

As indirect feedback is present even in open-loop MPC by construction,
i.e. when the new input sequence will be calculated, the new state of the sys-
tem will be known, and thus will be taken into consideration. Therefore, the
main difference between open-loop MPC and feedback MPC lies in the fact
that in open-loop, when at each time the input sequence is calculated, the
fact that only a part of it will be applied is ignored and the input sequence
is calculated as if it would all be used. This affects the constraints, as, the
longer the horizon, the higher the effect of the uncertainty. This should
be clear also from the constraints (21), where the constraints are tightened
by an additional 3σ̄i,j(τ) for every further step in the horizon they are ap-
plied. Guided by a similar approach in [26], an alternate approach is here
proposed, saturating this constraint tightening after one step. According to
this hypothesis, the constraints (21) become:

xi(0)− xj(0) + h
t−1∑

τ=0

(
uxi (τ)− u

x
j (τ)

)
≥ ∆+ 3hσ̄i,j(0)− rij(t)−Md1i,j(t)

xi(0)− xj(0) + h

t−1∑

τ=0

(
uxi (τ)− u

x
j (τ)

)
≤ −∆− 3hσ̄i,j(0) + rij(t) +Md2i,j(t)

yi(0)− yj(0) + h

t−1∑

τ=0

(

uyi (τ)− u
y
j (τ)

)

≥ ∆+ 3hσ̄i,j(0)− rij(t)−Md3i,j(t)

yi(0)− yj(0) + h

t−1∑

τ=0

(

uyi (τ)− u
y
j (τ)

)

≤ −∆− 3hσ̄i,j(0) + rij(t) +Md4i,j(t)

4∑

ν=1

dνi,j(t) ≤ 3, dνi,j(t) ∈ {0, 1}

0 ≤ rij(t) ≤Mrδr(t), δr(t) ∈ {0, 1},
(27)
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for all t ∈ {0, · · · , N} and i, j ∈ I with i 6= j.
Similarly, the constraints in all other cases can be relaxed, simply by

setting σ̄i,j(τ) = 0, for all τ > 0 and in the case where the correlation
structure is not taken into account, simply by assuming that wi(τ) = 0, for
all τ > 0.

A.3 Overall finite horizon optimization problem

Concerning the finite horizon optimization problem to be solved at each
time step, several alternatives have been presented. In order to recap, all
those approaches are shown in Table 20. Furthermore, some simplified cases
are provided in the table as simplifications of other cases. In those cases,
this is not the most efficient way to encode the constraints, but for brevity
reasons, they are presented in this fashion.

Constraint set Alternative Constraints

Dynamical constraints - (4), (6)

Priorities
Yes (7)
No (7), δi = 1,∀i ∈ I

Constraint relaxation
Yes (13)
No (8), rij(t) = 0,∀i, j ∈ I, t ∈ {0, · · · , N}

Wind
Correlated (17), (21)

Uncorrelated (12)
No wind wi(t) = 0,∀i ∈ I, t ∈ {0, · · · , N − 1}

Inter-sample constraints
Yes (22) or (23)
No (24)

Feedback
Yes (26)
No -

Saturation σ̄i,j(τ) = 0 or wi(τ) = 0, ∀τ > 0, i, j ∈ I

Table 20: Constraints and alternatives presented

The MPC problem to be solved periodically can then be written as:

min
ui(t),i∈I

t∈{0,...,N−1}

J (·)

subject to Dynamical, priority, relaxation, wind, inter-sample

and feedback constraints according to Table 20

(28)

where the corresponding constraints have to be substituted from Table 20.
In all the cases, the resulting problem is a MILP. Even though in general,
MILPs are in general NP-hard, several tools (see for instance [10]) have been
developed that are able to effectively solve reasonably sized instances of such
problems, as demonstrated in Section 4.5.
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As an example, the finite horizon optimization problem for a prioritized
algorithm, without allowing relaxation of constraints, using the wind corre-
lation structure, enforcing constraints between the samples and without the
use of feedback can be written as:

min
ui(t),i∈I

t∈{0,...,N−1}

J (·)

subject to (4), (6), (7), (8), (17), (21), (23)

rij(t) = 0,∀i, j ∈ I, t ∈ {0, · · · , N}.

(29)

A.4 FMS, autopilot and dynamics

Once the optimal inputs ui(t) are calculated, a simplified FMS controller
translates them into thrust and bank angle commands for the autopilot to
implement on the aircraft dynamics through the equations:

Ti =







CTdesi(FP)TMaxClimbi if ‖ui(t)‖2 + δtol > Vi
0.95TMaxClimbi if ‖ui(t)‖2 − δtol < Vi
CDi

Siρ

2 ‖ui(t)‖
2
2 else

(30a)

Ψi(t) = tan−1

(
uyi (t)

uxi (t)

)

(30b)

φ1i = k1

[
− sinΨi(t)
cosΨi(t)

]T [
xi − xi(t)
yi − yi(t)

]

+ k2(ψi −Ψi(t)) (30c)

for all t ∈ {0, · · · , N − 1} and i ∈ I, where δtol is a small tolerance to
avoid chattering around the desired airspeed.

To avoid unrealistically large bank angles and aircraft travelling in cir-
cles, saturation on the linear controller φ1i have to be introduced:

φ2i = min{max{φ1i ,−
π

6
},
π

6
}, φi =

{
min{φ2i , 0}, π/2 ≥ ψi −Ψi(t) ≥

π
3

max{φ2i , 0}, π/2 ≥ Ψi(t)− ψi ≥
π
3

.

(31)
Thrust and bank angle commands Ti and φi respectively are then im-

plemented by the autopilot on the system dynamics (1), according to which
the system evolves.

A.5 Overall hierarchical formulation

The scheme proposed for the CR problem is summarized in Algorithm 3.
The problem is solved every h minutes and when the optimal solution is cal-
culated, only the first step is applied. Then, the first step of the optimal so-
lution is translated through the FMS into thrust and bank angle commands
that the autopilot implements on the aircraft dynamics for h minutes. The
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procedure is then repeated in a receding horizon fashion, until all aircraft
reach their destination.

Algorithm 3 Prioritized Hierarchical Algorithm

Require: Qi(τ), τ = 0, pdi and s(i)∀i ∈ I

1: while ∃i s.t.

∥
∥
∥
∥

[
Xi(τ)
Yi(τ)

]

− pdi

∥
∥
∥
∥
2

> D do

2: Set pi(0) =

[
Xi(τ)
Yi(τ)

]

, for all i ∈ I

3: Solve the MPC problem (28)
4: Evolve the system according to (30), (31) in the interval [τh, (τ +1)h[
5: Set τ = τ + h
6: Measure new aircraft position Qi(τ), for all i ∈ I
7: end while

A.6 Model Parameters

This subsection of the appendix lists all the parameters that are considered
in the formulation of the mid term CR algorithm.
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Agent Parameter Parameter Description Value Source
Name

MPC Sampling h How often the 3 min Assumption
algorithm period resolution is updated

Prediction T Horizon over which 15 min Assumption
Horizon CR is performed

Inter-sample L On how many instants 6 Calculations
constraints in the sampling period

the constraints are enforced
CR separation ∆ Required horizontal 5 nm Concept

separation
Cost J Cost of maneuvers Deviation from Assumption

nominal speed
Wind bounds wi Wind bounds 3σ Assumption

as assumed by MPC
ADS-B RADS−B ADS-B range ∞ Assumption

Aircraft Type Type of aircraft A330 Assumption
assumed (if not defined)

Nominal speed unomi 228 m/sec Model
Max speed umax Maximum allowed speed 260 m/sec BADA
Min speed umax Minimum allowed speed 180 m/sec BADA

Max δu Maximum allowed speed 40 m/sec Model
acceleration change between two (0.22 m/sec2)

consecutive timesteps

Environment Wind forecast Meteorological forecast 0 Model
Wind error σ Standard deviation of 4.77 m/sec Model

standard deviation wind error assumed
Wind on Wi1 Forecast N(0, σ) Model
X axis error model

Wind on Wi2 Forecast N(0, σ) Model
Y axis error model

Wind on Wi3 Forecast 0 Model
Z axis error model
FL FL Flight Level 33 Model
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B MMPC Technical Details

B.1 Variable Horizon

In this section we briefly recap the variable horizon formulation employed.
The target regions which the aircraft are required to enter on completion
of any required conflict resolution manouevres are rectangular, so that the
target region Sn allocated to aircraft n is defined as

Sn := {rn : Qrn ≤ qn}. (32)

Optimisation of the horizon length is enabled with the optimisation of
a binary input decision variable associated with each step in the prediction
horizon, determining the point at which the target region constraints become
active. Specifically, if the binary associated with point i in the prediction
horizon takes the value 1, so that tn(k+i|k) = 1, the target region constraint
defined in (32) is active, and is predicted to be met at the next step in the
prediction horizon:

tn(k + i|k) = 1⇒ rn(k + i+ 1|k) ∈ Sn. (33)

This is achieved by the following constraint coupling the binary input vari-
able t to the target region constraint in (32), and the use of the ‘big-M’ [1]
formulation described earlier:

Qrn(k + i+ 1|k) ≤ qn(i) + 1.M
(
1− tn(k + i|k)

)
(34)

where M is a large positive integer, exceeding the largest possible value of
the state. We impose the terminal constraint that the target set is reached
by the end of the prediction horizon,

N−1∑

i=0

tn(k + i|k) = 1. (35)

We denote the prediction of the target time of arrival made at time k by
N(k), so that the terminal constraint of agent n is given by

xn(k +Nn(k)) ∈ Sn.

B.2 Modified Robust MMPC Algorithm

Before outlining the modified MMPC algorithm in detail, we define first
some additional notation required in Table 21. The maximal prediction
horizon employed for group Gj is obtained from

Nj = max
n∈Gj

µ.N̄n + τn − kj (36)

80



k0 Initial time k0 = 0

kj Times at which joint solutions for aircraft in cooperating set are obtained

τn Predicted time of entry of aircraft n

N̄n
Time taken for constant speed (cruising speed)
straight line trajectory of aircraft n

Gj Cooperating set of aircaft at time kj

Nj
Maximal prediction horizon for cooperative set at time kj
obtained from (36)

T Look ahead time for detecting potential entry of new aircraft

mj Number of aircraft joining on interval [kj , kj + T ]

Gj Gj = {mj−1,mj−1 + 1, . . . mj−1 +mj}

Table 21: Notation

where N̄n is the time associated with a straight line constant speed trajectory
and µ > 1 is a scaling factor to allow for the additional time required for
performing a conflict resolution manoeuvre. The second term τn − kj is the
number of steps into the prediction horizon at which aircraft n appears in
the scenario.

We define now the joint optimisation problem solved for cooperating sets
of aircraft in Problem B.1. The joint problem that must be solved at the
predefined times kj is given by

Problem B.1 Minimise:

VC(k) =
∑

n∈Gj

Nj−1
∑

i=0

(γ‖un(k + i|k)‖1 + itn(k + i|k)) (37)

with respect to inputs un(k+i|k) and binary inputs tn(k+i|k) for all n ∈ Gj ,
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subject to the nominal prediction model and tightened constraints:

x(k|k) = x(k) (38a)

x(k + i|k) ∈ X (i) ∀i ≥ (τn − kj) (38b)

un(k + i|k) ∈ Un(i) ∀i ≥ (τn − kj) (38c)

yn(k + i|k) ∈ Yn(i) ∀i ≥ (τn − kj) (38d)

xn(k +N(k)|k) ∈ Sn(N(k)) ∀i ≥ (τn − kj) (38e)

tn(k + i|k) ∈ {0, 1} ∀i ≥ (τn − kj) (38f)

tn(k + i|k) = 0 ∀i < (τn − kj) (38g)

the constraints in (34), the terminal constraint that all targets are reached
by the end of the horizon

∑

n∈Gj

Nj−1
∑

i=0

tn(k + i|k) = mj (38h)

and the equality constraints on the non-optimising agents which are not in-
cluded in the cooperating set Gj, formed from the solution obtained at the
previous time step

un(k+ i|k) = un(k+ i|k− 1)+ K̃n(i− 1)L̃(i− 1)w(k− 1) ∀ n 6= σ(k), (38i)

The coupled constraint sets X (i), the input constraint sets Uσ(k)(i), the local
constraint sets Yn(i) and the terminal target set regions Sn(i) are only en-
forced once the aircraft have entered the region of interest, after (τn − kj),
and are tightened according to the constraint tightening relations presented
in [6].

The maximal prediction horizon length, Nj , has to be chosen according to
(36) so that a solution to (B.1) exists.

The multiplexed problem solved by aircraft σ(k) at time k is given by:

Problem B.2 Minimise:

Vσ(k)(k) =

Nj−1
∑

i=0

(γ|uσ(k)(k + i|k)‖1 + itσ(k)(k + i|k)) (39)

with respect to inputs uσ(k)(k+ i|k) and binary inputs tσ(k)(k+ i|k) , subject
to the nominal prediction model and tightened constraints

x(k|k) = x(k) (40a)

x(k + i|k) ∈ X (i) (40b)

uσ(k)(k + i|k) ∈ Uσ(k)(i) (40c)

yσ(k)(k + i|k) ∈ Yσ(k)(i) (40d)

xσ(k)(k +N(k)|k) ∈ Sσ(k)(N(k)) (40e)

tσ(k)(k + i|k) ∈ {0, 1}, (40f)
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the constraint on the non-optimising agents

un(k+ i|k) = un(k+ i|k−1)+ K̃n(i−1)L̃(i−1)w(k−1) ∀ n 6= σ(k), (40g)

obtained from the solution from the previous time step, and the terminal
constraint in (35). The equality constraints on the non-optimising agents in
(40g) is initially derived from the solution to the centralised problem outlined
in problem B.1. The coupled constraint sets X (i), the input constraint sets
Uσ(k)(i), the local constraint sets Yn(i) and the terminal target set regions
Sn(i) are tightened according to the constraint tightening relations presented
in [6].

We detail now the modified variable horizon multiplexed algorithm exe-
cuted by aircraft n in Algorithm 4:

Algorithm 4 Variable Horizon Robust Multiplexed MPC with constraint
tightening and synchronous initialisation

1: Design stabilising K(i)
2: Tighten constraint sets X (i),U(i) according to the constraint tightening

relations presented in [6]
3: Receive centralised solution obtained at initial time k0 u∗

n(k0), tn(k0) to
Problem B.1 and if (τn − kj) = 0 apply the first input u∗n(k0|k0);

4: Wait one timestep; k = k0 + 1;
5: while m > 0 do
6: if k = kj then
7: m← m+mj

8: if n = σ(k) then
9: Obtain min{u∗

σ(k)(k), ûσ(k)(k)} as the solution to Problem B.2
10: Transmit plan and state information to all agents;
11: else
12: Renew current plan according to disturbance feedback policy
13: end if
14: else
15: if n = σ(k) then
16: Obtain min{u∗

σ(k)(k), ûσ(k)(k)} as the solution to Problem B.2
17: Transmit plan and state information to all agents;
18: else
19: Renew current plan according to disturbance feedback policy
20: end if
21: end if
22: Increment control input by first step in plan
23: Wait one timestep, k ← k + 1
24: m← m−

∑

n(1− tn(k))
25: end while
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