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Executive summary

Within HYBRIDGE novel Monte Carlo simulation speatp techniques have
successfully been developed and applied for raenteestimation. In iFly WP7
potential candidates are identified that are exqukttt provide significant room for the
development of complementary speed-up techniqueshirWiFly WP7 various
options for improvement are identified and these subsequently elaborated and
tested within parallel studies. One of these stitBeto combinesensitivity analysis
with Monte Carlo simulation based rare event estiorg which is addressed in the
current report, i.e. iFly deliverable D7.2f.
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1 Introduction

This section introduces this report by giving itackground as output of work
package 7 of the iFly project, by describing itpechive, and by outlining its contents.

1.1 iFly project

Air transport throughout the world, and particwam Europe, is characterised by
major capacity, efficiency and environmental chagles. With the predicted growth
in air traffic, these challenges must be overcomeriprove the performance of the
Air Traffic Management (ATM) system. The iFly projeaddresses these critical
issues by developing a paradigm step change imaddaATM concept development
through a systematic exploitation of state-of-the-anathematical techniques
including stochastic modelling, analysis, optimisatand Monte Carlo simulation.

The iFly project will develop a highly automated MTdesign for en-route traffic,
which takes advantage of autonomous aircraft oeratapabilities and which is
aimed to manage a three to six times increase2®@% en-route traffic demand.

iFly will perform two operational concept designctgs and an assessment cycle
comprising human factors, safety, efficiency, céfyaand economic analyses. The
general work structure is illustrated in FigureDlring the first design cycle, state of
the art Research, Technology and Development (Ra@pnautics results will be
used to define a “baseline” operational concepir the assessment cycle and second
design cycle, innovative methods for the desigeabéty critical systems will be used
to develop an operational concept capable of magamithree to six times increase in
current air traffic levels. These innovative methofthd their roots in robotics,
financial mathematics and telecommunications.

Air and

Ground
Requirements
\ Advanced

Operational
Design Cycle 1 Design Cycle 2 Concept

- Assessment -

Figure 1. iFly Work Structure.
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As depicted in Figure 2, iFly work is organisedoilgh nine technical Work Packages
(WPs), each of which belongs to one of the fouresypf developments mentioned
above:

Design cycle 1
The aim is to develop an Autonomous Aircraft AdwehdA’) en-route operational

concept which is initially based on the currentatstof-the-art” in aeronautics
research. The AConOps is developed within WP1. An important stgrtand
reference point for this A ConOps development is formed by the human
responsibility analysis in WP2.

Innovative methods

Develop innovative architecture free methods towakdy issues that have to be

addressed by an advanced operational concept:

* Develop a method to model and predict complexitgiotraffic (WP3).

* Model and evaluate the problem of maintaining madfent Situation Awareness
(SA) and avoiding cognitive dissonance (WP4).

» Develop conflict resolution algorithms for which i$ formally possible to
guarantee their performance (WP5).

Assessment cycle

Assess the state-of-the-art in Autonomous Airchafeanced (&) en-route operations

concept design development with respect to humetoris, safety and economy, and

identify which limitations have to be mitigatedonder to accommodate a three to six

times increase in air traffic demand:

« Assess the A operation on economy, with emphasis on the impact
organisational and institutional issues (WP6).

« Assess the Aoperation on safety as a function of traffic dgn@ncrease over
current and mean density level (WP7).

Design cycle 2
The aim is to refine the AConOps of design cycle 1 and to develop a vision A*

equipped aircraft can be integrated within SESARcept thinking (WP8). WP9
develops preliminary safety and performance requards on the applicable
functional elements of the *AConOps, focused on identifying the required
technology.
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Design Cycle 1 Assesment Cycle
WP1
WP6 A3 .
Tox a4 Ecoss%r;l one
A% ConOps Cost benefit
TO+20 —b>
wpP7 )
ez Safety / A% operations
capacity / T0 + 44 —®safety / Capacity / Efficiency
Human pa
responsibilities efficiency
TO + 12

TO + 38

WP3 l
Start at
Complexity TO +21
prediction r s WPS 3
T0+44 A op_erations )
3 non-airborne Requirements
WP4 A refinement and mitigations
Start at
Multi-agent TO+21
SA consistency WP9
8 A 3 operations
A airborne TO+44 . !
. Air Requirements
requirements
WP5
Conflict
resolution Design Cycle 2
TO + 44 - Innovative methods

Innovative methods

Figure 2. Organisation of iFly research.

1.2 Objective of iFly work package 7

The aim of iFly WP7 is to assess the AutonomousrAft Advanced (A) operations
developed by WP1 (AConcept) and WP2 (Human responsibilities in automas
aircraft operations), through hazard identificatiand Monte Carlo simulation on
accident risk as a function of traffic demand, $sess what traffic demand can safely
be accommodated by this advanced operational coraeg to assess the efficiency
of the flights. The accident risk levels assessexilsl be in the form of an expected
value, a 95% uncertainty area, and a decompositidhe risk level over the main
risk contributing sources. In order to accomplisis issessment through Monte Carlo
simulation, the complementary aim of this WP isfugher develop the innovative
HYBRIDGE speed up approaches in rare event MontéoGanulation. The work is
organised in four sub-WPs:

« WP7.1: Monte Carlo simulation model of Aperation

 WP7.2: Monte Carlo speed up methods
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« WP7.3 Perform Monte Carlo simulations
 WP7.4 Final report

This report addresses a specific task within WPasas explained below.

1.3 WP7.2: Monte Carlo speed up methods

Within HYBRIDGE novel Monte Carlo simulation speatp techniques have
successfully been developed and applied. As suehstart with a review of the
Monte Carlo simulation based accident risk assessgitiation, this is reported in
[iFly D7.2a], entitled ‘Review of risk assessmetaitgs for air traffic’.

Subsequently, potential candidates are identifiedt tare expected to provide
significant room for the development of complementapeed-up and bias and
uncertainty assessment techniques. In order t@dghe risk as much as is possible,
within this task various options for improvemente aidentified and these are
subsequently elaborated and tested within par&digks. In order to explore the
various options, several studies will be conducted,

* Develop an effective combination of InteractingtRé System based rare event
simulation with Markov Chain Monte Carlo speed aphnique. This is reported
in iFly Deliverable [iFly D7.2b], entitled ‘Transhmiensional simulation for rare-
events estimation on stochastic hybrid systems’.

» Develop a method to assess the sensitivity of plaltiaircraft encounter
geometries to collision risk, and develop imporeasampling approaches which
take advantage of these sensitivities. This willrbported in iFly deliverable
D7.2c [iFly D7.2c], entitled ‘Interim Report on Irmgance sampling of multi
aircraft encounter geometries’.

* Develop novel ways how Interacting Particle Systgmeed up techniques that
apply to a pair of aircraft can effectively be exded to situations of multiple
aircraft. This is reported in iFly deliverable [FID7.2d], entitled ‘Periodic
Boundary Condition in Large Scale Random Air Trafficenarios’.

* Develop an efficient extension of Interacting RaetiSystem based rare event
simulation for application to hybrid systems. Thasreported in iFly deliverable
[IFly D7.2¢], entitled ‘Rare event estimation forlaxge scale stochastic hybrid
system with air traffic application - Interactingrficle system (IPS) extension to
large hybrid systems’.

 Combine Monte Carlo simulation based bias and taicky assessment with
operation design parameter optimization. The keyatds accomplishing this is to
integrate sensitivity analysis with MC simulatioasled rare event estimation. This
study is addressed in the current report, i.e. délywerable D7.2f.
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Finally, the results obtained from these studidsh@ as much as possible combined
and integrated with the innovative speed up apprescdeveloped within
HYBRIDGE. This way we prepare an improved spee@pyproach for application to
the A* ConOps Monte Carlo simulation model of WP7.1. Wi be reported in iFly
deliverable D7.2g, entitled ‘Monte Carlo speed typles’.

1.4 Objective and organisation of the study in this report

The objective of this report is to study Monte ©Gabased assessment of the
sensitivity of collision risk versus changes in graeter values. The motivation for

studying assessment of these sensitivities steoms fwo complementary purposes.
One purpose is that for a parameter value havingrntainty, one wants to know how

this parameter uncertainty influences risk uncetyaiThe other purpose is that in the
design of a novel concept some parameters are wadérol of the design team. In

such case parameter sensitivity knowledge showdekign team which requirements
should be posed on these parameter values in tirdeduce the risk in a predictable
way.

This report is organised as follows. Section 2tstarth the rationale and approach of
this study. The multi-dimensional regression probland methods studied in this
report are presented in Section 3. Next, in Sedfidhe set-up of the Monte Carlo
simulations are presented and parameter choicékgisxample are given in Section
5. The results of the Monte Carlo simulations asewkssed in Sections 6, 7 and 8.
Section 6 considers four different estimation typad two sampling types for a low
number of regression coefficients. Section 7 carsidhe effect of the number of
sampling types and standard deviation of the nfmse low number of regression
coefficients. Section 8 considers the effect of ighér number of regression
coefficients. Concluding remarks are given in Set8.
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2 Rationale and approach of this study

2.1 Dual role of sensitivity analysis

In a series of studies [Blom et al., 2007, 200%] khteracting Particle System (IPS)
approach has been developed for the speeding upgeMoarlo simulation based

estimation of collision riskc of a stochastic hybrid system model of an advanced
ATM operation. Because such a model has redimensional parameteq, the

collision riskG is a function ofy, i.e. G((Q) .

Potentially, each of thea elements ofj may be one of the following two types:

* a parameter under control of the design,
« avariable having aleatory or epimistic uncertdinty

In both cases it is important to assess liwehanges as a result of changeginlf

G(Q) is linear inqg, then this is expressed by the partial derivaga%)?, which is

an n-dimensional vector. Hence, a chanfyg in the value of parametey yields a
change of sizé\; inrisk, i.e.

A, :{GG(q)} A
oq ‘

The A, may either be due to a controlled change in thsigde parameter

components, or due to errors in the assumed vdbrethe other variables. If the
uncertainty inq has a covarianciq, then G(q) is estimated with a standard

deviation g, satisfying:

Jé{ac;(q)} 5 {ac;(a)}
aq i 0q

! Uncertainty can be formally classified as aleatancertainty and epistemic uncertainty [Swiler & iy,
2007].Aleatory uncertaintyor stochastic uncertainty) characterizes the imfietrandomness in the behavior of the
system under studyEpistemic uncertainty(or state of knowledge uncertainty, or subjectivecartainty)
characterizes the lack of knowledge about the gpjate value to use for a quantity that is assutoekdave a
fixed value in the context of a specific applicati@hus stochastic uncertainty is a property ofgpstem under
study, while subjective uncertainty is a properfityh@ analysts performing the study [Helton, 1993].
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G(9)

A large aa— is helpful whenq is a design parameter. However the opposite is
true whengq is a variable having uncertainty. Because of thal dole that may be
0G(q)
aq
conducting multiple IPS runs.

played by the derivativ this report studies how to estimate this derivaty

In handling this problem there are several isshashave to be taken into account:
- In general,G(Q) is not linear irg;

- The numben of scalar parameters is large, exg 100.
- One IPS run using parameter valyeloes not yieldG(q) but yields it with a

random errorg [Blom et al., 2007, 2009], i.e.
G=(1+£)G(q)

- The standard deviation of random er®6(qg) decreases only with the square

root of the number of Monte Carlo simulation ruhattare used for one IPS run
[Blom et al., 2007].

2.2 lIdentification of suitable sensitivity analysis approach

The issue of sensitivity analysis for large compsieulation models has been a rich
area of research for several decades. Nice ovesvidwhe resulting developments are
provided by [Morgan & Henrion, 1990], [Cacuci, 2003Kurowicka & Cooke,

2006], [Saltelli et al., 2008] and [DeRocquignyaét 2008]. The general setting of the
problems considered is th@&(q) is nonlinear iy, the numben of scalar parameters

is significant, e.gn>1, and a computation ofG(qg) for one value ofq is
demanding.

Our application of the IPS approach towards theaaded ATM application [Blom et

al., 2007, 2009] clearly is at the demanding sidine spectrum of sensitivity analysis
problems. In particular sinca>100 and the random erraf G(q) has a significant

variance.

The classical approach towards sensitivity analigsie write G(Q) as a Taylor series
expansion, and then linearize around a specifica{Joworking pointg*. For this

classical linearization approach, well working sewvisy analysis approaches have

been developed [Cacuci, 2003]. The key shortconoing local approach is that it
works well in a linear neighbourhood g only. However, if relevant] values fall

outside of this linear neighbourhood, then the aaph falls short.
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In order to capture the full spectrum of relevantvalues, sensitivity analysis has to
be done in some global way. There are three maibaglsensitivity approaches
[Saltelli et al, 2008]:

- One-At-a-Time

- Sobol Total Effects

- Meta-modelling

For each of these three main approaches, a shorinaty and its usability in
combination with IPS are shortly discussed below.

One of the simplest types of global methods is kmaw One-At-a-Time (OAT). The
OAT approach comes down to calculating deltassims a result of deltas in one
component of). [Morris, 1991] developed an efficient randomizegerimental plan
for performing OAT which requires computation®¢q) for (n+1)K values ofg. Here

K is the number of grid points needed to cover tlalinearity of G(q). A
disadvantage of an OAT approach is its non-robgsttewards random errors if a
computation of G(g) for each value ofg is done through running Monte Carlo
simulations. This makes OAT unsuitable to be used¢admbination with an IPS
approach.

Sobol Total Effects approach towards sensitivitglgsis represent&(qg) as a finite
series of commonly named “Sobol terms” with incnegsorder of interaction
between the components@fSobol, 1993]. Although the number of “Sobol tefriss
finite, there are combinatorially many of them. Hawer, for sensitivity analysis there
is no need to assess each of these terms indilydMWdhat is needed only is the “total
effect” for each of the components qf Following this principle, [Saltelli, 2002]

developed a systematic method to compute thesel Sdbtal Effects” through
computation of G(g) for K(n+2) values of . Here K is a base number of

samples, which may vary from a few hundred to atlesusand. Hence, Sobol “Total
Effects” based global variance estimation is corafpomally very demanding, and
therefore not a suitable candidate to be combinéd IRS.

In order to escape from the limitations of the abexplained general methods, for
specific domain applications often a kind of aniabit meta-modelG(q) is being

developed forG(Q). Onceé(q) has been estimated, sensitivity computations ean b
done foré(q) rather than forG(g). The estimation oé(q) is done by finding the

optimal fit from a family of analytically defineduhctions to input-output samples
{9 ék; k=1,.., K}. Through a regression analysis the estimatiofs(d]) is robust

against random errors in the output samples. A imetdel approach needs the base
number of K samples only once. Obviously, the effectivenessaometa-model

22 March 2011 TREN/O7/FP6AE/S07.71574/037180 IFLY Page 16/144



iFly 6" Framework programme Deliverable D7.2f

approach largely depends on a proper choice offahmly of analytically defined
functions.

During earlier collision risk assessment for ATM [iBverdij & Blom, 2002], for
sensitivity analysis the following exponential faynof functions has shown to work
well for fitting a meta-modeG(q) of the form:

ING(g)= £,+F"Inq 1)

with estimated intercept terriﬁ0 and estimated parametér. In order to apply (1) it

is required that each of thhecomponents of] assumes strictly positive values only
[Everdij & Blom, 2005; Everdij et al., 2006]. In grious TOPAZ studies this meta-
model has been used in combination with an OAT @gugr. In the current study,
meta-modelling approach (1) has been identifiedthes logical candidate to be
combined with multi-dimensional regression analysis

2.3 Logarithmic meta-model of sensitivity estimation approach
Assume the-th IPS run uses), ~ p, (.) as input sample and yields an IPS computed

output value

G =(1+£)G(q)
Now taking logarithm yields:
ING, =In(L+&,)+InG(q) )

Through a multi dimensional regression analysis & data pairs
{lng,In G}, k=1,.., K, we get the followingG(q,) estimate

ING(q) = f,+F Inq,
with fo and F™ such that Root Mean Square[drh Gk =In é(qk)] is minimal.

The implication is that a change of a facfgy in Ing, yields a factory; change in
InG(q,) with

/YG = ﬁTXq

22 March 2011 TREN/O7/FP6AE/S07.71574/037180 IFLY Page 17/144



Deliverable D7.2f

6" Framework programme

iFly

Similarly if the uncertainty iln g, has covarianc€o\{In g} then

Var{ln @ q)} =F'Coln g} F

2.4 Multi-dimensional linear regression problem
For the derivation of a multi-dimensional regressamalysis approach we consider

the log-linear situation

InG(q)=f,+F'Inq,

Substituting this in Equation (2) yields
3)

NG, =In(l+¢& )+ f,+F" Inq,

Next, we define:

Yi :Inék
w, =In(1+¢,)
X% =Ing,

Hence, x, is ann-dimensional vector.
With this, Equation (3) becomes:
(4)

Y = fo+ FTx +w
From Equation (4) we get

Yi =[f0 FT]K;}'Wk: FT% + w,

with

and noise procefgwk} , @ sequence of independent and identically disteib (i.i.d.)
random variables, withE{w} =0 andVar{w} =0o>.
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3 Multi-dimensional linear regression methods

In this report the linear version of the sensitiviistimation problem is considered.
Assume for everk =1,2,... K, Y, is a function of am, dimensional vectox,, i.e.

consisting ofn, components, say, ;, X ,.---, X, and noise procedsw, }

Y=L % FT]le}wk:ﬁTwwK (5)
with

% =[1 %]

Fr=[f, F']
with F’ :(fl f, - fnp) and intercept termf;, and where{w} is a sequence

of independent and identically distributed (i.i.dgndom variables witl‘{ xk} and
{w} independent ané&{w} =0.

The values off, and f, ,f,,...,f
{yk’Xk; k=12, ,K}

are unknown; these have to be estimated from

Mo

Written in full, Equation (5) reads as follows:

1
ve=(f f - f,) X“ +w, for k=1,2,.. K. (©)

Xn

P

The multi-dimensional linear regression problentasestimate then,-dimensional
parameterF and intercept termf, from the data sequence{g/l,yz,---,yK} and

{x %0 x -

The problem addressed in this section is how dod#ear regression based
estimation of F depend on the variables, andw, .

For this multi-dimensional regression problem, ¢hdifferent types of estimation
approaches are explained in the following subsesfiae. Classical Least Squares
(CLS) estimation in Subsections 3.1-3.3, Least 8zmpiaestimation with Moore
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Penrose (LS-MP) in Subsection 3.4, and Partial t_8aggiares (PLS) estimation in
Subsection 3.5.

3.1 Classical Least Squares (CLS) estimation without intercept term
Consider Equation (5) with zero intercept tefg=0 , i.e. consider

Y= F' % +w for k=12, K. (7)

with F' :(f1 f, - fnp). The values off, , f,,..., f, are unknown, and have to

be estimated from{yk,xk; k=12, ,K}. Written in full, Equation (7) reads as

follows:

X
X, _
ve=(t £ - 1) rw for k=1,2... K. 8)

Xn

P

Assume F is the Classical Least Squares (CLS) estimatathefn -dimensional

parameterF of Equation (7). EstimatoF is the value ofF which minimizes the
sum of squares of the deviatiéns

2
F :mFinkZ:Hyk—FT&H 9)

with known samples, and known realisationg, . That is

A

— H — T —
F=min(Y-XF) (Y- XP
where the following definitions are used %6rof sizeK x1 andX of sizeK xn,

Y2Col(y, %ovs %)

X2Col(X . % ... %) (10)

and thus matriXX (this matrix is called the design matrix, see [@agil and Meyer,
1979])) is given by

2 The notation || . || represents the Euclidean rforra-norm).
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X=| : : (11)

Similarly with these definitions and wit/ = Col(w, W,..., V\() Equations (7) and
(8) for k=1,2... ,K can be written as

Y=XF+W (12)

or written in full:

f
Y1 Xl,l .. )(1np 1 W
y2 — : : f2 + V\é
V. X1 7 Ko fnp W,

Multiplying left and right hand terms in (12) b)X" and subsequently taking,Y-
conditional expectation yields a characterisatian IféE{F|X,Y}. Because

E{ XTW]| X, \} =0, the least squares solution of estimatorfor the case that there

is no intercept term satisfies the following eqoati
(XTX)F=XTY (13)

Solving Equation (13) yields the least squaresmﬂxtbrlE for the case that there is no
intercept term, which consists af scalar values, saf = Col( f, 1. ,fnp), hence

F is of sizenp x1.

If full rank condition is satisfied
Because matriX has sizeK xn, , matrix X" X is a square matrix of size, xn,

and rank(XTX) < min( K ,np). The latter follows from
rank(XTX) = ranl( XXT) = rank X) < miﬁ K r;). So this means that the rank of

the square matrixX" X is always smaller than or equal to the number ofpaters
Np-

22 March 2011 TREN/O7/FP6AE/S07.71574/037180 IFLY Page 21/144



iFly 6" Framework programme Deliverable D7.2f

If the inverse of then xn, matrix XTX exists, then the Classical Least Squares

(CLS) estimatoiF follows directly from
F=(X"X)" XY,
which can for example be determined with Gausdliamreation.

The inverse of then, x n matrix XT X exists if and only if matrixX™ X has full
rank, i.e. if rank(xT X) = n,. Since the size of matriX is Kxn_, this case can only
happen fork =2n_, not forK <n,.

[1I-conditioning
The condition numbepf a square matriR is defined as«(A) =||A{|[|]jA‘1H for a given

matrix norm (e.gp-norm, Frobenius norm) with the convention that A £« for

singular A, and the condition number is always greater tharequal to 1. The
condition number depends on the underlying norms la measure of stability or
sensitivity of a matrix to numerical operations. nSamler for example a linear
systemAx= b, the condition number oA is a measure of the sensitivity of the
solution to perturbations @& or b. If the condition number is close to 1, then small
relative perturbations i will lead to similarly small relative perturbations the
solutionx, in which casé\ is said to bavell-conditioned If the condition number ok

is large, then small relative perturbationsiwill lead to large relative perturbations
in the solutionx, in which caseéA is said to bell-conditioned [Golub and van Loan,
1996].

This means that if matrixX™ X isill-conditioned then the matrix inversion oX™ X
can cause numerical problems.

Rank deficient case
If the inverse of then xn  matrix XTX does not exist, then the least squares

problem for the no intercept case as considerethig subsection has an infinite
number of solutions. Alternative ways to determankeast squares solution for rank
deficient cases are considered in Subsectionsigl8 5.
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3.2 Estimation error of unknown parameter vector F

Lemma 1. If the data satisfiesy, = F" x, + w, with {x} and {w,} independent and
E{w} =0 and standard deviatioo, >0 for k=1,2,.. K, and matrixX" X has

full rank with XéCoI(xlT,x;,...,){), then F is an unbiased estimator, i.e.

-1

E{ IE} = F. It also follows that\/ar( If) = afv( X' X)

Proof: According to(12):

Y= XF+W

whereW = Col(w, W,..., V\() BecauseX' X has full rank it is invertible, and (13)

yields
F=(X"x)" XY
=(XTX)" XT(XF+ W)
=F+(X"X)" X"W
Hence
E{F}=F+(X"X)" X W=F
and

Var(lf): E_

—_—
T
|
M
~——
—_—
T

ot
:E_(XT x)* XTW(( X X" X vﬂ
:E:(XTX)_l XWW X X 31}

<(xx)" e w) { X

The standard deviatioa,, >0 implies thatE{W V\/T} =0’ |. Substitution yields

var(F)=(X"X)" X'z I X( X X"

=g2(X"x)"
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In practiced?, is often not known. Because CLS algorithm doesuseto?, then g’

can be estimated from, X as follows.
Y = XF+W andthusW=Y- XF

Hence

A

E{a21Y. % _WW 1 l[Y— XAFT[Y— XH.
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3.3 Classical Least Squares (CLS) estimation with intercept term
Consider Equation (5) with intercept terfy, i.e.

T 1 Ty
yk:[f0 F }L‘k}er:F X +w for k=1,2,... K. (14)

with
T _ T —
i(k =1t %] that is (1 s & q’)
FT:[fO FT] IET:(fo f; fnp)

The values off; and f,, f,,....f, are unknown; these have to be estimated from

{Vi % k=12 ,K}.

Written in full, Equation (14) reads as follows:

yk:(f0 f, fnp) Xkl +w, for k=1,2,... K. (15)

18]

Assume F is the Classical Least Squares (CLS) estimatorthaf (np+1)-

dimensional parametef of Equation (14). Estimatorr is the value which
minimizes the sum of squares of the deviations

2
Yk_~TF

~ K
F=min)

Fia

with known samplest, and known realisationg, . That is

F=min(Y- XF)" (Y- XH

F

where the following definitions are used for of size Kx1 and X of size

K><(np+1)
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YZCol( Y, %oees %)
X £Col(X % ... %) (16)
and thus matrixX (also called design matrix) is
1 %, Xip,
X=[t : (17)
1 XK,l XK n

Similarly with these definitions and wit/ = Col(w, W,..., W ) Equations (14) and
(15) fork =1,2,... ,K can be written as

Y=XFE+W (18)
or written in full:

f
Y1 1 lel o Xl“p fo W
. . . . 1 .

Vo) |1 % o ka )l | (W

The least squares solution of estimakorfor the case that there is an intercept term
satisfies the following equation

TV

(X"X)F=X"y (19)

Solving Equation (19) yields the least squaresresttir F for the case that there is an
intercept term, which consists of +1 scalar values, saf = Col( fo, f fone. ,fnp)

of size(np +1)><1.

If the inverse of the(np+1)><(np+l) matrix X" X exists, Equation (19) can in

principle be solved by determined with Gaussiamiglation. However using matrix

X , more information would be used than the data idemi; because of the first
column j.,,, a Kx1-dimensional vector of ones. Therefore considefiegon of

Theorem 2.4.1 on page 36 in [Campbell and Meyer9L.9rom which the following
Corollary can be derived.
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Corollary 1. Let matrix X =[j,,, X| be a matrix of sizeK X(np+1), where

1
Jia =1 is a K x1 vector of ones.
1K><l
The vectorlfT:[i?0 IfT]=(1?O f,o-- fnp) with IfT:(f1 f, - fnp),isa

least squares solution of F=Y if and only if

A

1. -
fo= e (Y- XF) (20)
and F is a least squares solution of
X, F=Y, (21)

where

) (22)
Yo :( | _E Ji j Y
and J,,« =Jwal xk 1S @ matrix of ones, antl,,, is an identity matrix of siz& xK .
|
Equation (20) written in full reads as follows
- 1. ~
fo= e (Y- xF)
Vi) (X o X | f,
:i (1 1) A D :
K N
Y Xa 0 X, fnp (23)
f
=V-(% - %))
f

where the meaiy and the mearx; of thej-th column are defined as
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_ 1 _
y:EZ Yo X; :EZ)&J :

k=1

X, = : : Y= (24)

From Corollaryl it follows that the least squaressolution

ET :[fo IET}:(fAO f,o- fnp) of Equation (19) is equivalent to solving:

(i) estimator of the intercept terrﬁ) which satisfies Equation (20), that is

fo :%jw (Y— XIE), and

(ii) least squares solution of estimatér, where F" =(1?l f, - fnp) satisfies the

following equation
(Xo" Xo) F= XY, (25)

For the case with an intercept terfp as considered in Equation (14), the solvability
of Equation (25) depends on whether or not the n, matrix X, X, is invertible,
but even if matrixX," X, is invertible, it can bél-conditioned which implies that
matrix inversion ofX," X, can cause numerical problems.

I full rank condition is satisfied

Because of the construction of matkxin Equation (24) it follows that the maximum
number of independent rows equidls 1, since the rows of matr add up to zero.
Therefore it follows that for square matrl," X, of sizen xn_ that

rank(Xg XO) = ranl( X, xg) = rank X,) < mi(1 K- 1@) So the rank of the square

matrix X, X,is always smaller than or equal to the number cdipatersh,.

If the inverse of then xn  matrix X," X, exists, then the Classical Least Squares

(CLS) estimatorF follows directly from
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~ -1
F :(XOT Xo) xoTYo'

which can for example be determined with Gaussdiamreation.

The inverse of then, x n, matrix X," X, exists if and only if matrixX," X, has full
rank, i.e. if rank(XoT XO)= n,. This case can only happen fé¢=n +1, not for

Ksnp.

Rank deficient case
If the inverse of then xn  matrix X,' X, does not exist, then the least squares

problem for the intercept case considered in thilsection has an infinite number of
solutions. An alternative way to determine a leagtares solution to Equation (19) is
to apply the Moore-Penrose or pseudo-inversXtoX or X," X,, this is considered

in Subsection 3.4. Another alternative way is tplpdPartial Least Squares (PLS)
estimation, which is described in Subsection 3.5.
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3.4 Least Squares estimation with Moore Penrose (LS-MP)

It was shown in Subsection 3.3 that for data satigf Equation (14) including an
intercept term, the least squares solution of edtmF satisfies Equation (25), that

IS
(Xo"X,) F= X",
If the inverse of then xn  matrix X,' X, does not exist, then the least squares

problem with the intercept term has an infinite fo@mof solutions.

An alternative way to determine a least squarestisol to Equation (25) is to apply
the Moore-Penrose or pseudo-inverse to squarexuafrX,. Then the least squares

estimatorF follows from
F=(X %) X%

Where(XoT Xo)+ represents the Moore-Penrose or pseudoinversatoixi,’ X, .

A Moore-Penrose or pseudoinvergéof anm x n matrix A is a generalization of the
inverse matrix, it is defined as the unique m matrix satisfying all of the following
four Moore-Penrose conditions:

AN A= A AAN = K, (AA) = AR, (ATA) = A A
whereH’ is the Hermitian transpose (also called conjugatespose) of a matriA.

For matrices whose elements are real numbers thsfe@mplex number$ =H'.
A Moore-Penrose or pseudoinverse of a matrix catetbermined by using the

Singular Value Decompositidnlf rank(A) = n, then A" = ( A A)_1 A, while ifm=n
=rank@) , then A" = A™. This latter means that if a square matrix is itibke, the

Moore-Penrose inverse and inverse coincide by diefin(see for example [Golub
and van Loan, 1996] or [Strang, 1980]).

If square matrixX," X, is invertible, then the Moore-Penrose inverse mmwerse
coincide by definition, which means that the salntiof estimator F obtained by
CLS coincides with the solution of estimatér obtained by least squares estimation
with Moore-Penrose. The Moore-Penrose inverse @magplied to matrixX;] X,
(and similarly to matrixX™ X in case there is no intercept term), though fogda

matrices this is time-consuming [Courrieu, 2005].

3 A Singular Value Decomposition (SVD) decomposesatrixinto the product of three matrices, such hatUSV. If Ais a
real matrix, theJ andV are orthogonal matrices.Afis a complex matrix, thed andV are unitary matrices. Matri®is a
diagonal matrix whose diagonal values are in detiogrorder. The diagonal values$rare the nonnegative square roots of the
eigenvalues oA'A and are defined as the singular values.éfhe columns ob) andV, which are called left and right singular
vectors, are orthonormal eigenvector®\&f andA'A, respectively, or, wheA is complex, unitary eigenvectors AR andA’A.
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3.5 Partial Least Squares (PLS) estimation
Another approach to deal with rank deficiency oftieas X' X and X, X, in the

multi-dimensional linear regression problems issidered in this subsection. This is
the Partial Least Squares (PLS) regression metutljs described in this subsection
for the case with an intercept term.

Consider the multi-linear regression problem wittercept term described in Section
3.3 with Equation (18)

Y=XF+W
or written in full:
W) (TR X | 0] (w
: : : : 1 :
Yk 1 %, - X n, f W
This latter equation can also be written as
Y=FK+XF+W

where F, £ Col( f,, f,...., f,) is anK x1 vector , and thus

f f
yl 0 Xl,l xlnp fl V\(L
Vo Tl A I
' | LX X¢
Yk fo o ’ fnp W

Here, we consider the rank deficient case, and dimmw to apply the Partial Least
Squares (PLS) regression method. More details & frm literature are described
in Appendix A.

There are different PLS algorithms as addresseéxample in [De Jong, 1993] and
[Rosipal & Kramer, 2006]. The two most commonly dissdgorithms for PLS are
NIPALS and SIMPLS as explained shortly below. Thege algorithms have been
considered for the Monte Carlo simulations in tiejgort.
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NIPALS based PLS (PLS-N)

The PLS method in its classical form is based @nNbnlinear Iterative Partial Least
Squares (NIPALS); it is an iterative process whinkiolves the construction of
“deflated data matrices”. The approach is describeshore detail in Appendices A
and B. Literature shows that different choices banmade in the PLS algorithm
based on NIPALS, for example the origidkdhndY are assumed to be mean-centered
and some algorithms, though not all, also assunmeeskind of scaling (e.g. by
subtracting column means and dividing by standasdation of each column). There
is also some freedom in normalisation of columntamecthat are calculated in the
algorithm as is shown in Appendix B, since nornaian be done at different points
in the algorithm. These kinds of differences betwabyorithms make it difficult to
directly compare the scores and loadings of diffeRLS implementations [Mevik &
Wehrens, 2007]. Appendix B describes a PLS algoritased on NIPALS.

SIMPLS based PLS (PLS-S)

In [De Jong, 1993], an algorithm is proposed whdaltulates the PLS factors directly
as linear combinations of the original (centeredtrines and is referred to as
SIMPLS which stand for ‘Straightforward IMPlemenmnbat of a statistically inspired
modification of the PLS method’. The SIMPLS apptoavoids the construction of
deflated matrices of the originXlandY matrices as is applied in the NIPALS based
PLS algorithms. The SIMPLS approach directly findeight vectors which are
applied to the original matriX, and without explicit computation of matrix invess
As explained in [De Jong, 1993], this implies tB#VIPLS is also faster than the PLS
algorithms based on classical NIPALS (see alsm[A1D09]).

PLS steps based on SIMPLS
PLS consists of the four steps as described hereafhere the calculation of the PLS
factors - in step 2 - is based on SIMPLS:

Step 1: PLS centering
Given matrixX of size K xn, and column vecto of size K x1 as in (21)-(22), i.e.

X, o )(1’np Y,
X1 " %o Yk Jka

P
Kxnp

The PLS algorithm first starts with centeringXfandY, i.e. by subtracting column
means to get centered variabls andY,. In this way matrices
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X
Y.

X - M,
Y- M,

o

(27)

(]

where M, is an Kxn_  matrix of column means an¥l, is an Kx1 vector of
column means, i.e.

M, =| : : : M, =] : (28)

- <l

|
<

Kx1

where the mearx; of the elements in theth column of matrixX and the meary of

vectorY satisfy

1L _ 1
Xj:Ez)&,j’ yZEzyk'

k=1 k=1

With this centering, the (column) mean ¥ is a matrix of zeros and similarly the
mean ofY, is a vector of zeros. Some PLS algorithms alsdyaggaling of matrixX

and vectoly in this first step as is described in Appendix A.

Remark:

This first PLS step has a relation with CorollarinISubsection 3.3:
» the centered matrixX, and the centered vectdf in Equation (27) are the same

as matrix X, and vectory, in Equations (22) and (24), and
« the matrix of column meanM, and vector of column mearid, in Equation

(28) are the same a%JKXK X and %JKXK Y in Equation (22).

Using these two relations, we get:
Xo= X, = X= M,

(29a)
Hb=¥=Y-M
with
M, =%JKXKX
1 (29b)
M, =EJKXKY
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Step 2: PLS decomposition

The PLS technique works by successively extractamgors from bothX, and Yy,
such that the covariance between the extractedrfad maximized. As described in
[Geladi & Kowalski, 1986] and [Rosipal & Kramer, @8], PLS decomposes the
Kxn, matriX* of zero-mean variable¥, and the K x1 vector of zero-mean
variablesY, into two outer relations (within each blogk andYp individually) and a
linear inner relation is assumed between the colueators of the score matrix and
corresponding column vector in score matdx The PLS technique tries to find a
linear decomposition ofy andY; , such that

First block of variables: X, =TP +E

Second block of variables: Y,=U S + E (30)
Inner relation: U=TD+H

where T and U are Kxa matrices of thea extracted score vectors (components,
laten? vectors), then,xa matrix P and thelxa matrix S represent matrices of
loading$ and theKxn, matrix E, and theKx1 matrix E, are the matrices of
residuals. MatrixD is anaxa diagonal matrix andH denotes theKxa matrix of
residuals.

The decomposition oKXy andYj is finalized so as to maximize covariance between
extracted score matricdsandU. There are multiple algorithms available to saive
PLS problem ([De Jong, 1993], [Rosipal & Kramer0a]), all algorithms follow an
iterative process (i.e. column by column) to fimdre matrice§ andU and loading
matricesS andP and diagonal matri®. As already explained above, the two most
commonly used algorithms for PLS are NIPALS and BU8. The SIMPLS based
PLS approach of [De Jong, 1993] is described befoNIPALS based PLS approach
is described in more detail in Appendices A and B.

SIMPLS

In the SIMPLS algorithm of [De Jong, 1993], sucoessrthogonal vectors
t,t,,...,t, are extracted from a given matXxsuch as to maximize their covariance

with corresponding vectaw,, u,,...,u, of a given matrix (or vectory. These vectors

* Dimensions ofX andY in Appendices A and B are denoted (generallypas andnxp instead of
Kxn, andKx1 respectively.

® Latent variables replace the original variables by a smaller nundféunderlying' variables.

6 Loading vectorsare the estimated weights which are to be apptigdd variables when fitting the
bilinear relationship between the Y and X variab(&ef:
http://www.bioss.ac.uk/smart/unix/mplsgxe/slidessgary.htm)
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t, andu, depend on weight vectors and s, for h=1,2,..., a, which can be applied
directly to the centered matrice§, andY;:

t, = X, 1 h=12,... a
u, =Y, S, h=12...,8

such that
» the covarianceCov( U, g)of score vectors, andu, are maximised,

« weight vectors, ands, are normalised, i., r, =1 and s s =1, and
» vectorst, are orthogonal, i.etl.T t, =0 for h>j andh, j=1,2,... a.

This means that the aim is to determine weightorsct, and s, for h=1,2,..., a

such that
— — Te T
meteodu )= maLcol Y e Kl mal B g O
where A, = X! Y, , under the constraint that
tit,=0 wheret, = X,r, for h> | (32)

Without this last constraint there is only one igtngforward solution: vectorsg, and
s, are the first left and right singular vectors @bss product matrixa, = X] Y,.

Orthogonality constraint (32) is imposed to gereenaiore than one solution and to
generate a set of orthogonal factorsof

The first weight vectorsr, and s are the first left and right singular vectors of
A = X; Y,, can be obtained from ttgingular Value decomposition (SVD) of cross-
product A, = X] Y,. This implies that, is the dominariteigenvector ofp, A and s

is the dominant eigenvector ofy A, which equals the maximum attainable

covariance.

As is explained in more detail in [De Jong, 1998ith the constraint in Equation
(32), the next weight vectorg and s, for h=2,3,... ;a are obtained as the dominant

eigenvectors ofpA, A' and Al A respectively, which can be obtained from the SVD
of deflated product matrices,

" The dominanteigenvectorof a matrix is an eigenvector corresponding to efgenvalue of largest
magnitude (for real numbers, largest absolute yaltithat matrix.
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AW:Ah_l—vh(\fh Arl) for h=2,3,.. ¢
A=A

Here [v;,V,....,\,] represents an orthonormal basis[@f, p,...., p,] for X-loading
vectors p, expressing the relation between the origialariables and th&" PLS
factor with

P, = Xy th/(t;th)

and may be obtained from a Gram-Schmidt orthonopaian (see Equation (33) in
[De Jong, 1993]) of orthonormal bagig, \,,..., v,

v, O ph—vh_l(\L1 p%) for h=2,3,.. ¢
viip

The symbolll not only denotes proportionality, but also a subset hormalization
of the resultant vector.

The main difference with the standard PLS (such BZANS) is that the deflation
process applies to the cross-produégt= X Y, and not to the larger data matrices

X, and Y, . Note that instead of centering bothandY, one might center only,
sinceA = X] Y, = X' Y.

After extraction of thea components, matriceR, T, P, S U andV are created
consisting of the columns created by the vectorsaeted during the individual
iterations, i.e.

R=[rl,r2,...,ra]npxa
T=[t,t...t]
P=[p P R, 0
S=[3 8 8l
U={u, .. 0],
v :[\/1,v2,...,\zd]npxa

(33)

Step 3: PLS estimation in terms of centered variables
The estimation oY in terms of the centered variabl¥g and, is [De Jong, 1993]:
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Yo = Xo FPLS (34)
where estimatotfPLS is the nyx1 regression coefficient matfix
Fos =RS (35)

and whereR is a weightn, xa matrix (also referred to as alternative weightnrags
opposed to a weight matrix W in the NIPALS algamdhandSis alxa vector.

Step 4: PLS estimation in terms of original variables
In terms of the original variableX and Y it follows from Equations (29) and (34)
that

A

Y= FPLS] + X Fos (36)

where IfPLS is thenyx1 regression matrix computed from Equation (35)

and F is anKx1 intercept term (i.e. the regression coefficient thee intercept)

PLSJ
which follows from

~

FPLSQ =M =M Fps (37)

8 In Appendices A and B for the regression matrhgther notation is used, i.8p, 5, and similarly
for regression matrix and intercept terms usedqgudtion (36).
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4 Set-up of Monte Carlo simulation

This section describes the approach taken in comduttie Monte Carlo simulations

for the linear version of the sensitivity estimatjoroblem as was explained in Section
3 and for small number of scalar parameteys

4.1 Monte Carlo simulation approach

In preparation of a Monte Carlo simulation of mo¢#), that isy, = f,+ F'x +w,
one has to adopt values for the estim&@nd intercept parametdy, and shapes for
the probability density functions for random vatesw, andx, , and to generate
output values fory, according to Equation (4).

Given K samples forx, andK generated outputs foy,, in this section the (partial)
least squares estimatér will be determined using the various algorithmsSettion

3. Finally, the resulting estimatois will be compared to the original adopted values
for F. In this section we assume to rish Monte Carlo simulation runs for each of the
methods in Section 3.

The simulation approach can be summarized as follows

Step 1: Setup
First start with the following choices:
1.a. Choose the number of components and choose values for timg-dimensional

vector F' =(fl f, - fnp) and the intercept parametéy.
1.b. Choose a probability density function for randomatale w, .
1.c. Choose a probability density function for randomatale X, .
1.d. Choose a value for the number of samples

Assumptions for the probability density functionisnmise w, and random variable
X, are discussed below in Subsection 4.2.

Step 2: Type of least squares estimation and sampdj method

2.a. Choose the type of least squares estimation. Optoa CLS, LS-MP, PLS-N,
PLS-S as discussed in Subsections 3.1-3.5.

2.b. Choose the sampling method to draw samplesfoiT his is further discussed in

Subsection 4.3.

22 March 2011 TREN/O7/FP6AE/S07.71574/037180 IFLY Page 38/144



iFly 6" Framework programme Deliverable D7.2f

Step 3: Evaluate least squares estimator using MoatCarlo simulation

Monte Carlo simulation using the method chosentap 2 works as follows:

First, determine the numbdéy of Monte Carlo simulations runs to evaluate the
method chosen in Step 2.

Next, for each of thedd Monte Carlo runs the following steps apply.

3.a.For k=1,2,... Kdraw samples forx, and compose matrixX from these

samples.
3.b. For k=1,2,... Kdraw samples forw, and compose vectoW from these

samples.
3.c. For k=1,2,.. ,Kgenerate outputy, using Equation (4) and compose vecYor

from these outputs.
3.d. Given matrixX and vectory, determine the (partial) least squares estim&tor

A

using the method selected in Step 2, Wh(zFé)T=(fl f, - fnp)and

determine the estimate of the intercept tefrgn

Step 4: Determine mean and standard deviation of &st squares estimator over
all MC simulation runs

Determine the meayy( fo), the meanu(lfT) :(/,1( fl) H( fz) e fnp)),
the variance\/ar( fo) and the covarianc@ov( IE) over the output values from the

Monte Carlo simulation runs. Finally compare theéneated means and variances
with the true values oF and f,.

4.2 Probability densities for w, and X,

Probability density functions of w
Suppose that noise, for k=1,2,... ,K is an independent and identically distributed

(i.i.d.) sequence of random variables. It is asslithat noisew, is Gaussian with
mean 4, =0 and standard deviatios, >0, i.e. w, ~ N{ O O,JWZ} :

Probability density functions of x
For the probability density function of it is assumed that

» the procesx, for k=1,2,.. ,K is a sequence of independent and identically
distributed (i.i.d.) random variables;

* foreach samplex, wherek =1,2,.. K, the random variables, ;, X ..., X,

are sampled uniformly from the intervals
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[ziww' ZH'GH]é[? +|”( b/, ) Zt '”( ol )}

[Zj+ln(Q)—|n(£j),2+In(p)+|n(gj )] (38)

for j=1,2,.. n,, where
- Z; are chosen values for eaghr1,2,... n in z= Col(z,z,... ,‘;p)
- bias parameterb; for j=1,2,..n,in b éCoI(Q,Q,... ,qp)

- uncertainty parameters, for j=1,2,..n in / éCoI(fl,ﬁz,...,fnp)

p

4.3 Sampling methods

Two sampling methods are used in Step 3a to drawplsamaccording to the
probability density function ok, i.e. Standard Random Sampling (SRS) and Latin
Hypercube Sampling (LHS).

4.3.1 Standard Random Sampling (SRS)

In this case, for each sampk;:Col(xkyl,x(yz,...,>q(y,b) where k=1,2.... ,K, it is
assumed that the random variablgs, X ,...., % , are mutually independent and
each random variable, ; for j=1,2,.. n
the interval in (38).

, is according to a uniform density on the

4.3.2 Latin Hypercube Sampling (LHS)

In this case for eacl, = Col(xkyl, L IPT xW) Latin Hypercube sampling is applied.
Latin Hypercube pickK different values from each of the, random variables
Xe11 X201 %, from a uniform density as follows:

1. For each random variabbe ; for j=1,2,.. n in x =Co|(xk,l, X preeen )&'m) the
interval [Z.LOW ZH'G“} é[? +In( p/fi ) zZ+ In( b?, )J is divided intoK pieces

.
such that there is equal probability per piece.

2. From each of th& intervals a single value is sampled at randompraieg to a
uniform density on that interval. This produces mgie of K values for each
input distribution that are more uniformly spread than for standard random
sampling.

3. The K values thus obtained fog , are paired randomly (equally likely

combinations) with the&K values ofx ,. TheseK pairs are combined in a
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random manner with th& values ofx, , to form K triplets, and so on. Each
pairing is done by associating a random permutaifdhe K integers with each
input variable.
This results in anK xn,) matrix’ of input, where th&™ row contains specific values
of each of then, input variables, to be used on 8 sample.

® This is matrixX in (22)
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5 Examples for use in MC simulation

This subsection gives an overview of examples thihtoe used for the Monte Carlo
simulations. All examples have the same valuegtfernumber of components,,

intercept termf,, vector F £ Col( fi, f,,... ,fnp), valuesx = Col(fg,iz,... ,XP), bias
vectorb = cm(q, b,.., Qp) and uncertainty parametets= Col(él,éz,... ,énp) , and
the same kind of the noise proce{sg(} is assumed as explained hereafter. The steps

below refer to the steps in the Monte Carlo simafatapproach as introduced in
Subsection 4.1.

Step 1: Setup
The values of the parameters in the examples caesidle this report, as specified by
Step 1 (Setup) of the Monte Carlo simulation apg@hogas described in Subsection

4.1), are as follows:
1.a. For the number of components, intercept termf, and vector

= :(fl f, - f ) in all examples in Sections 6 and 7 the following

Mo

values are assumed:

=28, f,=0.5,
f,=0.1,f,=0.2,f,= 0.4f,= 0.8f,= 1d&,= 3.2,= 6.4,= 1L

In Section 8 the following values are assumed:
np =200, f,=0.5, (f, -+ fu)=(f, - f.)=(0.1 - 12), where

f, =round( f +J—_1(fend— finic) ;1} for j=1,2,...n  where the function
n,-1

p
p
round means that the number in the first argumendunded up til the nearest 1
(second argument in round function) decimal place.

1.b. For the probability density function for random radte w, , in all examples the
following is assumed (as in Subsection 4.2). Nojsmcess {w} for

k=12...,K is an independent and identically distributeddj)i sequence of
random variables, withw, Gaussian with mean,, =0 and standard deviation

o,>0,ie w~ N{ O,UWZ} . In the simulations, various values for, >0 will

be used.
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1.c. For the probability density function for random redte x, , sampling is applied
on the following interval (see also Subsection4.2

[z;ow,z“'e“]:[z +In(b)=In(¢; ). z+In( o) +In(4 )]

where in each of the examples it is assumed #hatl, b, =1 and ¢; =2 for
eachj=1,2,..n,. The choice forz =1 is made for normalization. With these

parameter values the sampling interval is

[, 7" |=[1-In2,1+ In] = [0.31,1.6¢.

1.d. In the simulations, the chosen valuesKomill be varied from 2 through 50000.

In the examples considered in this report we waliywthe values foK and for the
standard deviatiow,,; all other parameter values are fixed.

Step 2: Type of least squares estimation and sampdj method

2.a. Four types of least squares estimation are appledCLS, LS-MP, PLS-N and
PLS-S.

2.b. For each of the estimation types, both SRS and BHSconsidered to draw
samples forx, .

This results in the following eight algorithms, tigbunot all will be considered as
becomes clear in the next section.

Algorithm | Estimation type Sampling type
A.l Classical Least Squares (CLS) SRS

A.2 Classical Least Squares (CLS) LHS

B.1 Least Squares with Moore-Penrose (LS-MP) SRS

B.2 Least Squares with Moore-Penrose (LS-MP)  LHS

C.1 NIPALS based Partial Least Squares (PLS-N) SRS

C.2 NIPALS based Partial Least Squares (PLS-N) LHS

D.1 SIMPLS based Partial Least Squares (PLS-S) SRS

D.2 SIMPLS based Partial Least Squares (PLS-S) LHS

Step 3: Evaluate least squares estimator using MoatCarlo simulation
The chosen values for the number of Monte Carlo kitimns runs, for each of the
examples isN = 100.

Subsequently apply steps 3a-3d of the Monte Carlalation approach as introduced
in Subsection 4.1 (see Page 38).

22 March 2011 TREN/O7/FP6AE/S07.71574/037180 IFLY Page 43/144



iFly 6" Framework programme Deliverable D7.2f

Step 4: Determine mean and standard deviation of &st squares estimator over
all MC simulation runs
Determine mean and standard deviations.
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6 Monte Carlo simulation results

In this section the results of the Monte Carlo datians are discussed for each of the
following algorithms.

Algorithm | Estimation type Sampling type
Al Classical Least Squares (CLS) SRS

A.2 Classical Least Squares (CLS) LHS

B.1 Least Squares with Moore-Penrose (LS-MP) SRS

B.2 Least Squares with Moore-Penrose (LS-MP)  LHS

C.1 NIPALS based Partial Least Squares (PLS-N) SRS

D.1 SIMPLS based Partial Least Squares (PLS-S) SRS

In the simulations, the chosen values f6rand the chosen values for standard
deviationo,,, have been varied from low to high.

In this section the following is discussed:

» Results for Classical Least Squares (CLS) with 8RS and LHS are discussed
in Subsection 6.1.

* Results for Least Squares with Moore-Penrose (LS-M#) both SRS and LHS
are discussed in Subsection 6.2.

» Results for NIPALS based Partial Least Squares {RL.8ompared to results for
LS-MP are discussed in Subsection 6.3.

* Results for SIMPLS based Partial Least Squares-®L&mpared to results for
LS-MP are discussed in Subsection 6.4.

* A summarising discussion is given in Subsection 6.5
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6.1 Discussion of results for CLS Algorithms A.1 and A.2

Results for Classical Least Squares (CLS) with Isatinpling types SRS and LHS are
presented in this subsection. As explained in Suiluse 3.3, in order to apply CLS,
the following should hold true: matrix X; X, must be invertible, i.e.

rank(xg XO) =n,. This can only happen foK = n, +1, not for K <n_ . This means
that the CLS approach is not suitable fér<n . So the results presented in this

subsection are for values df larger than or equal to the number of regression
components, .

The specific resglts that are presented in thisestilom are:

« The meanu(f;) and the true values fof; for eachj =1,2,... n .

« The standard deviatiowr(f)) divided by o, /VK , i.e. a(f)VK /g, which is
referred to as the normalized standard deviatioa(cffj) . The reason for doing so

is that the standard deviatiorts(fj) are expected to be proportional to the
standard deviatiow,, and inversely proportional to the square rooKdbr each
i=12,..n,.

This subsection is organised as follows:
* In Subsection 6.1.1, we vaiy for a fixed standard deviatios,, .

* In Subsection 6.1.2, we vary standard deviatgnfor a fixed K .
* In Subsection 6.1.3, we vary standard deviatign for a fixed K close to the
number of regression componemis

* In Subsection 6.1.4, the results obtained in Sulmser6.1.1 through 6.1.3 for
CLS algorithms A.1 and A.2 are discussed.

6.1.1 Variation of K and fixed oy,

Consider algorithm A.1, i.e. for CLS with SRS, farfixed value of the standard
deviationo,, and with variation oK, as specified in the following table:

Algorithm Values for K Values for o,
A.l1 (CLS with SRS) | K ={9, 10, 11, 12, 14, 16, 18, 20¢,, =0.5
50, 100}
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The following two figures present:
« The meany(f;) as a function of the parameter ind¢x1,2,.. n, for each of

the values oK as specified in the above table, and the trueegafor
(f, f, -~ fg)=(0.1 02 04 08 1.6 3.2 6.4 1I.

e The normalized standard deviatiou(fj)\/E /o, for each of the parameter
indices j =1,2,... n, as a function oK . To make the figures readable, both the

horizontal and vertical axes are presented in arltggnic scale.

A.1 (CLS with SRS) and sigma_w =0.5

—A— K=9
14.0 —i—K=10
= 120 M K=11
; 10.0 4 —>—K=12
b | —¥—K=14
E 2:8 —o—K=16
4 4.0 A A —+—K=18
P = ——K=20
g2
2'0 —o—K=100
L. T T T T T T T + Real fj

1 2 3 4 5 6 7 8

Parameter index j=1,2,...,np=8

Figure 3. Mean /J(fj) values as a function ofj = 1,2,...n, with algorithm A.1

(CLS with SRS) for 6, =0.5 andK = {9, 10, 11, 12, 14, 16, 18, 20, 50, 100}. The
red line indicated as ‘Real fj' represents the truevalues for f; .

Remark: From this point on in several of the figrthe legend sometimes refer to

m1 through m8, this should be read as f1 throug{Tfss applies to Figures 4, 7, 24
and 30-48). Moreover real fj should be read as true

A.1 (CLS with SRS) and sigma_w =0.5

——m1=0.1

% 1.0E+03 m2=02
. +
£ m3=0.4
3D A 4=0.8
o T LOE+02 n ma=0.
<8 4 —%—m5=1.6
3 §’ 1.0E+01 1 % ——m6=3.2
3 1.0E+00 T 1 m8=12.8
1.0E+00 1.0E+01 1.0E+02

K (Log scale)

Figure 4. Normalized standard deviation U(fAj)\/E/O'W for | = 1,2,..., np with

algorithm A.1 (LS-MP with SRS) for 6, =0.5 as a function ofK = {9, 10, 11, 12,
14, 16, 18, 20, 50, 100}.
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To show the effect of the type of sampling techni®@RS or LHS, consider both
algorithms A.1 and A.2, i.e. for CLS with SRS and3. respectively, for the same
fixed value of the standard deviatiar), and variation ofK , as specified in the table

above, that is:

Algorithm Values for K Values for o,

A.1 (CLS with SRS; black line) | K={9, 10, 11, 12, 14, 16, 1806, =0.5
and A.2 (CLS with LHS; red line) 20, 50, 100}

The following figure presents:
* The normalized standard deviatim(fj)\/E/JW forj =1, i.e. for parametem =

0.1, as a function oK for algorithm A.1 (i.e. with SRS; black line) aatjorithm
A.2 (i.e. with LHS; red line), and where both therihontal and vertical axes are

presented in a logarithmic scale.

A.1 (CLS & SRS; black) & A.2 (CLS & LHS; red): f1=0.1, sigma_w=0.5

1.0E+03

1.0E+02

—&—f1=0.1 SRS
—4&—f1=0.1 LHS
1.0E+01
3

1.0E+00 \
1.0E+00 1.0E+01 1.0E+02

K (Log scale)

sgm_f*sqrt(K)/sgm_w (Log
scale)

Figure 5. Normalized standard deviation U(fj)\/R/O'W for j = 1, i.e. for
parameter f,= 0.1, with algorithms A.1 (CLS with SRS) and A.2 (CIS with
SRS) fore,, =0.5 as a function oK ={9, 10, 11, 12, 14, 16, 18, 20, 50, 100}.

6.1.2 Variation of o, and fixed K

Consider algorithm A.2, i.e. for CLS with LHS, farfixed value ofK and variation
of standard deviatiow,,, as specified in the following table:

Algorithm Values for K Values for o,
A.2 (CLS with LHS) K=16 o, = {0.001, 0.01, 0.1, 0.2, 0.4,
0.8,1,2,5,10}
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The following two figures present:
« The meany(f;) as a function of the parameter ind¢x1,2,.. n, for each of

the values ofg,, as specified in the above table, and the trueegdlfior
(f, f, - fg)=(0.1 02 04 08 1.6 3.2 6.4 1I.

* The normalized standard deviatiou(fj)\/E /o, for each of the parameter
indices j =1,2,... n, as a function ofo,, where both the horizontal and vertical

axes are presented in a logarithmic scale.

A.2 (CLS with LHS) and K = 16

—e—ow=0.001
——ow=0.01
1‘2‘8 n ow=0.1
~ 12. —>—ow=0.2
5
5 10.0 /A | % ow=04
g 8.0 - —e— ow=0.8
= 6.0 —+—ow=1
@, 4.0 ——ow=2
c | ow=5
§ é'g | —&—ow=10
2'0 —&— Real fj
1 2 3 4 5 6 7 8

Parameter index j=1,2,...,np=8

Figure 6. Mean y( fj) valuesas a function ofj = 1,2,...,n, with algorithm A.2

(CLS with LHS) for K =16 ande,, = {0.001, 0.01, 0.1, 0.2,0.4,0.8, 1, 2, 5, 1QeT
red line indicated as ‘Real fj' represents the truevalues for f; .

A.2 (CLS with LHS) and K = 16

2 1oe+03 ——m1=0.1
T —8—m2=0.2
£ 1.0E+02 | m3=04
2@ m4=0.8
< S —¥—m5=1.6
5 10E+01 —0—m6=3.2
r_l o— : - ;'w_ﬁ::'ﬁ ——m7=6.4
% 1.0E+00 - : | | | m8=12.8
1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01

sigma_w (Log scale)

Figure 7. Normalized standard deviation U(fAj)\/E/O'W for j = 1,2,...np with

algorithm A.2 (CLS with LHS) for K = 16 as a function ofs,, = {0.001, 0.01, 0.1,
0.2,0.4,0.8,1, 2,5, 10}.
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To show the effect of the type of sampling techni@RS or LHS, consider both
algorithms A.1 and A.2, i.e. for CLS with SRS and3. respectively, for the same
fixed value of S and variation of standard deviatian,, as specified in the table

above, that is:

Algorithm

Values for K | Values for oy,

A.1 (CLS with SRS; black line) and K=16 o, = {0.001,
A.2 (CLS with LHS; red line)

0.2,04,0.8,1, 2,5, 10}

0.01, 0.1

The following figure presents:
¢ The normalized standard deviatim(f,-)\/?/aw forj =5, i.e. for parametef =

1.6, as a function ofg, for algorithm A.1 (i.e. with SRS; black line) and
algorithm A.2 (i.e. with LHS; red line), and whdyeth the horizontal and vertical
axes are presented in a logarithmic scale

A.1 (CLS & SRS; black) & A.2 (CLS & LHS; red): f5=1.6, S = 16

1.0E+03

1.0E+02

1.0E+01 -

——f5=1.6 SRS
—&—f5=1.6 LHS

—2

1.0E+00 T

sgm_f*sqrt(K)/sgm_w (Log
scale)

1.0E-03

Figure 8. Normalized standard deviation U(fAj)\/E/O'W for | =

1.0E-02

1.0E-01 1.0E+00 1.0E+01

sigma_w (Log scale)

5, i.e. for

parameter f.= 1.6, with algorithms A.1 (CLS with SRS) and A.2 (CIS with
SRS) forK = 16 as a function ob,, = {0.001, 0.01, 0.1, 0.2,0.4,0.8, 1, 2, 5, 10}.
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6.1.3 Variation of o, and fixedK close ton,

Consider algorithm A.2, i.e. for CLS with LHS, farfixed value ofK and variation
of standard deviatiow,,, as specified in the following table:

Algorithm Values for K Values for o,
A.1 (CLS with SRS) K=9 g, = {0.001, 0.01, 0.1, 0.2, 0.4,
0.8,1,2,5,10}

The following figures present:
« The meanu(f;) as a function of the parameter indgx1,2,... n, forK =9 and

o, ={0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2} and the values for
(f, f, - fg)=(0.1 02 04 08 1.6 3.2 6.4 1J. For this case, the

obtained values of the mear( fj) become rather inaccurate in cage= 5 or 10,

therefore they have not been shown in the figutevihe
e The normalized standard deviatiou(fj)\/E /o, for each of the parameter

indices j =1,2,... n, as a function ofo,, where both the horizontal and vertical

axes are presented in a logarithmic scale.

A.2 (CLS with LHS)and K=9

—e—ow=0.001
——ow=0.01
ow=0.1
—>—ow=0.2
—¥%—ow=0.4
—0—ow=0.8
—+—ow=1
——0ow=2

Mean (estimate f_j)

1 2 3 4 5 6 7 8
Parameter index j=1,2,...,np=8

Figure 9. Mean ,u(fj) values as a function ofj = 1,2,...n, with algorithm A.2

(CLS with LHS) for K =9 andey,, ={0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2}. The scal
of the vertical axis in Figure 9 is larger than inFigure 3 or Figure 6.
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A.2 (CLS with LHS) and K =9
o —e—f1=0.1
; 1.0E+04 —8—f2=0.2
z 3=0.4
| \ ¢
.OE+ k
£ 1.0E+03 K f=0.8
n Y
Q% 1.0E+02 r—— T " N\\a ; —*—f5=1.6
= — = = —
= 8 = "\_ —e—1{6=3.2
£ 1.0E+01 ——f7=6.4
| —
E  1.0E+00 - | | | | =128
¢ 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01

Figure 10. Normalized standard deviation o( fj)\/R/JW for j = 1,2,...np with

sigma_w (Log scale)

algorithm A.2 (CLS with LHS) for K = 9 as a function ofes,, = {0.001, 0.01, 0.1,
0.2,04,0.8,1, 2,5, 10}

Consider algorithm A.1, i.e. for CLS with SRS, fofixed value ofK and variation
of standard deviatiow,,, as specified in the following table:

Algorithm

Values for K

Values for oy,

A.1 (CLS with SRS)

K=10

0.8, 1, 2, 5, 10}

o, = {0.001, 0.01, 0.1, 0.2, 0.4

4=

The following two figures present:
« The meany(f;) as a function of the parameter indg¢x1,2.... n, for each of the

values ofg,, as specified in the above table, and the trueegaior

(f. f,

fg)=(0.1 02 04 08 16 32 6.4 1.

The normalized standard deviatiou(f,-)\/?/aw for each of the parameter
indices j =1,2,... n, as a function ofg, where both the horizontal and vertical

axes are presented in a logarithmic scale.
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iFly
A.1 (CLS with SRS) and K =10
15.0 ——ow=0.001
—&—ow=0.01
= 10.0 ow=0.1
= —%—ow=0.2
g 50 —¥%—ow=0.4
£ ——ow=0.8
o
- =
& ow=5
= 501 8 | —m—ow=10
—— Real mj
-10.0

Parameter index j=1,2,...,np=8

Figure 11. Mean ( fj) valuesas a function ofj = 1,2,...n, with algorithm A.1

(CLS with SRS) forK = 10 andse,, = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 1®eT
red line indicated as ‘Real fj' represents the truevalues for f; .

A.1 (CLS with SRS) and K = 10

1.0E+03

1.0E+02

sgm_f*sqrt(K)/sgm_w (Log
scale)

1.0E+00

1.0E-03

1.0E+01 R=

1.0E-01 1.0E+00 1.0E+01

sigma_w (Log scale)

1.0E-02

——f1=0.1
——f2=0.2

—X¥—f5=1.6
—0—f6=3.2
—+—f7=6.4

f3=0.4
f4=0.8

f8=12.8

Figure 12. Normalized standard deviation o( l?]-)\/R/JW for j = 1,2,...np with
algorithm A.1 (CLS with SRS) for K = 10 as a function ofs,, = {0.001, 0.01, 0.1,

0.2,0.4, 0.8,
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To show the effect of the type of sampling techni@RS or LHS, consider both
algorithms A.1 and A.2, i.e. for CLS with SRS and3. respectively, for the same
fixed value of K and variation of standard deviatian,, as specified in the table

above, that is:

Algorithm

Values for K

Values for oy,

A.1 (CLS with SRS; black line) and
A.2 (CLS with LHS; red line)

K=10

o, = {0.001, 0.01, 0.1
0.2,0.4,0.8,1, 2, 5, 10}

The following figure presents:

* The normalized standard deviatior{ l:j)\/R/JW forj = 8, i.e. for parametef,=
12.8, as a function otr, for algorithm A.1 (i.e. with SRS; black line) and
algorithm A.2 (i.e. with LHS; red line), and whdyeth the horizontal and vertical
axes are presented in a logarithmic scale.

A.1 (CLS & SRS; black) & A.2 (CLS & LHS; red): f8=12.8, K = 10

1.0E+03

1.0E+02 -

sgm_f*sqrt(K)/sgm_w
(Log scale)

——8=12.8 SRS

1.0E+01 ml AT MBS128LHS

1.0E+00 T T T
1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01
sigma_w (Log scale)
Figure 13. Normalized standard deviation o(f,)vK /o, for j = 8, i.e. for

parameter f,= 12.8, with algorithms A.1 (LS-MP with SRS) and B.ZALS-MP
with SRS) for K = 10 as a function ofs,, = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5,

10}.
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6.1.4 Discussion of results for CLS Algorithms A.1 and A2

Here, a summarising discussion is given of thelteguesented in Subsections 6.1.1
through 6.1.3 for CLS algorithms A.1 and A.2.

Mean L( fj):

* The results show that for most valuexof 9 ando,, the obtained values for the
mean (f;) approach the true values &f very accurately, though with the

exception oK being close tm, or of 5., being very large. For example fidr= 9
in Figure 3 and in Figure 9 the obtained valuedtiermeany(f;) become

inaccurate, similarly fos,, = 5 ando,, = 10 in Figure 6 and Figure 11
respectively.

Normalized standard deviation o( l?j)\/E/UWZ

* For K close ton, (i.e. K=9 and 10), the obtained values for the normalized
standard deviatiom(fj)x/R/aW sometimes become relatively large (see Figure

4 and Figure 12).
- ForKk =9 andg,, = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 1h¢ values of

the normalized standard deviations(fj)\/R/aW for all j=1,2...n in

Figure 10 vary between 19 and 1290.
- ForK =10 ando,, = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 1i¢ values of

the normalized standard deviatiorts(fj)\/RIUW for all j=1,2,..n,in

Figure 12 vary between 8 and 48. Fqy = 0.01, the obtained values for
O'(fj)\/R/O'W vary between 11 and 48, whereasdpr= 0.001, 0.4 and 10, the

obtained values foo( fj)\/E /g, vary between 8 and 14.
- ForK =9, large values ofr( fj)x/R/aW occur more often than fét = 10.
« ForK =16 andg, ={0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 1h¢ values of
the normalized standard deviatioog fAj)\/E/O'W forall j=1,2,.. n , fall all

within the range of 3.0 to 4.7 (See Figure 7).
+ ForK>9 (ie. K>n, +1), the results show that the largkr becomes, the

smaller the obtained values far( fj)\/E/aW for j=1,2,.. n ,become. For

example in Figure 4 withs, = 0.5, the obtained values for the normalized
standard deviationsr(fj)x/R/aW for K = 10 fall within the range 7-15.5 and for

K = 100 fall within the range 2.3-3.
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LHS versus SRS:
« For allK > 9 and for alb,, as considered in the simulations, sometimes SRS

yields smaller values of the normalized standardati®ns o( l?j)\/E/UW, and

sometimes LHS does (See Figure 5, Figure 8 and¢itf8). However no
systematic differences can be observed betweetigediiained with SRS and

LHS.
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6.2 Discussion of results for LS-MP Algorithms B.1 and B.2

Results for Least Squares with Moore-Penrose (L3-Mih both sampling types
SRS and LHS are presented in this subsection.

This subsection is organised as follows:
* In Subsection 6.2.1, we vaty for a fixed low value of standard deviatior),.

* In Subsection 6.2.2, we vaty for a fixed high value of standard deviatior).

» In Subsection 6.2.3, we vary standard deviatignfor a fixedK (= 16).

* In Subsection 6.2.4, we vary standard deviatgnfor a fixed K (= 10) close to
the number of regression componenfs

* In Subsection 6.2.5, the results obtained in Sulmsex6.2.1 through 6.2.4 for LS-
MP algorithms B.1 and B.2 are discussed.

* In Subsection 6.2.6, the results obtained for Clgbraghm A.1 and LS-MP
algorithm B.1 (based on Subsections 6.1.1- 6.18 Sumbsections 6.2.1- 6.2.4),
both with SRS are discussed.

6.2.1 Variation of K and fixed low value ofa,,

Consider algorithm B.2, i.e. for LS-MP with LHS,rfa fixed value of the standard
deviationo,, and with variation ofK , as specified in the following table:

Algorithm Values for K Values for o,
B.2 (LS-MP with LHS) K=4{4,6,8,9, 10, 25, 50, 1005, = 0.01
500, 1000}

The following two figures present:
« The meany(f;) as a function of the parameter indg¢x1,2.... n, for each of the

values ofK as specified in the above table, and the trueegaior
(f, f, -~ fy)=(0.1 02 04 08 1.6 3.2 6.4 1I.

 The normalized standard deviatiou(f,-)\/?/aw for each of the parameter
indices j =1,2,... n, as a function ofK where both the horizontal and vertical

axes are presented in a logarithmic scale.
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B.2 (LS-MP with LHS) and sigma_w = 0.01

——K=4
14.0 K6
: K=8
= 120 /] —3%K=9
“é 10.0 ol —¥—K=10
T 8.0 —0— K=25
g 6.0 /4{ : —— K=50
S 50 K=500
g o —e—K=1000
= oo 1 = —8— Real fj
1 2 3 4 5 6 7 8

Parameter index j=1,2,...,np=8

Figure 14. Mean u( fj) valuesas a function ofj = 1,2,...n, with algorithm B.2

(LS-MP with LHS) for e, =0.01 andK = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000}.
The red line indicated as ‘Real fj’ represents therue values for f; .

B.2 (LS-MP with LHS) and sigma_w = 0.01

——f1=0.1
(=]
S 1.0E+04 —8—2=0.2
% oEs03 f3=0.4

OB+ £z _
% - =gl f4=0.8
% LOE+02 - *— 5216
Eo —o—{6=3.2
#  1O0E+01 - ——17=6.4
£ |
U% 1.0E+00 ‘ ‘ T 18=12.8
1.0E+00 1.0E+01 1.0E+02 1.0E+03

K (Log scale)

Figure 15. Normalized standard deviation o( fj)\/E/aW for j = 1,2,...np, with

algorithm B.2 (LS-MP with LHS) for e, =0.01 as a function oK = {4, 6, 8, 9,
10, 25, 50, 100, 500, 1000}.

To show the effect of the type of sampling techni®@RS or LHS, consider both

algorithms B.1 and B.2, i.e. for LS-MP with SRS didiS respectively, for the same
fixed value of the standard deviatiar), and variation ofK , as specified in the table

above, that is:

Algorithm Values for K Values for o,
B.1 (LS-MP with SRS; black line) and | K = {4, 6, 8, 9, 10, 25, c,, = 0.01
B.2 (LS-MP with LHS; red line) 50, 100, 500, 1000}
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The following figure presents:

The normalized standard deviatior( fj)\/E/aW forj =1, i.e. for parametef,=

0.1, as a function oK for algorithm B.1 (i.e. with SRS; black line) aalfjorithm
B.2 (i.e. with LHS; red line), and where both tharihontal and vertical axes are

presented in a logarithmic scale.

B.1 (LS-MP & SRS; black) & B.2 (LS-MP & LHS; red): f1=0.1, sigma_w=0.01

1.0E+04
1.0E+03 -

——f1=0.1 SRS
1.0E+02

—&—f1=0.1 LHS
1.0E+01 -

sgm_f*sqrt(K)/sgm_w (Log
scale)

1.0E+00 T T f
1.0E+00 1.0E+01 1.0E+02 1.0E+03
K (Log scale)
Figure 16. Normalized standard deviation J(fj)\/R/JW for j = 1, i.e. for

parameter f = 0.1, with algorithms B.1 (LS-MP with SRS) and B.2(S-MP with
LHS) for ¢, = 0.01 as a function oK = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000}.

6.2.2 Variation of K and fixed high value ofe,,

Consider algorithm B.1, i.e. for LS-MP with SRSy fo fixed value of the standard
deviationo,, and with variation ofK , as specified in the following table:

Algorithm Values for K Values for o,
B.1 (LS-MP with SRS) K=1{2 4,6,8,9, 10, 11, 20,6, =0.5
35, 100}

The following two figures present:
« The meany(f;) as a function of the parameter indg¢x1,2.... n, for each of the

values ofK as specified in the above table, and the trueegaior
(f, f, -~ fy)=(0.1 02 04 08 1.6 3.2 6.4 1J.

* The normalized standard deviatior{ fj)\/R/JWfor each of the parameter indices
j=12,.. n, as a function ofK where both the horizontal and vertical axes are

presented in a logarithmic scale.
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B.1 (LS-MP with SRS) and sigma_w = 0.5
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Parameter index j=1,2,...,np=8

Figure 17. Mean u( fj) valuesas a function ofj = 1,2,...n, with algorithm B.1

(LS-MP with SRS) for 6, = 0.5 andK ={2, 4, 6, 8, 9, 10, 11, 20, 35, 100}. The red
line indicated as ‘Real fj' represents the true vales for f,.

sgm_f*sqrt(K)/sgm_w (Log
scale)

B.1 (LS-MP with SRS) and sigma_w = 0.5

——f1=0.1
——f2=0.2

1.0E+04

1.0E+03

3=0.4

1.0E+02

f4=0.8
—X¥—f5=1.6

1.0E+01 4

1.0E+00

—

I,

y S

—0—f6=3.2
—+—f7=6.4

—— —&

1.0E+01

K (Log scale)

f8=12.8

1.0E+02

Figure 18. Normalized standard deviatioro( fAj)\/E/aW for j = 1,2,..np with
algorithm B.1 (LS-MP with SRS) fore,,= 0.5 as a function oK = {2, 4, 6, 8, 9, 10,

11, 20, 35, 100}.

To show the effect of the type of sampling techni®@RS or LHS, consider both

algorithms B.1 and B.2, i.e. for LS-MP with SRS didiS respectively, for the same
fixed value of the standard deviatiar), and variation ofK , as specified in the table

above, that is:

Algorithm

Values for K

Values for oy,

B.1 (LS-MP with SRS; black line) and
B.2 (LS-MP with LHS; red line)

K=1{2 4,68, 9 10, 6,=0.5
11, 20, 35, 100}
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The following figure presents:

The normalized standard deviatior( fj)\/E/aW forj =1, i.e. for parametef,=

0.1, as a function oK for algorithm B.1 (i.e. with SRS; black line) aalfjorithm
B.2 (i.e. with LHS; red line), and where both tharihontal and vertical axes are
presented in a logarithmic scale

B.1 (LS-MP & SRS; black) & B.2 (LS-MP & LHS; red): f1=0.1, sigma_w=0.5

(@]

S 1.0E+03

gl

E _ 10E+02 *

239 —e—f1=0.1 SRS
<9 —A—f1=0.1 LHS
S ” 1.0E+01 -

L

|

E  1.0E+00 : !

@ 1.0E+00 1.0E+01 1.0E+02

K (Log scale)

Figure 19. Normalized standard deviation U(fj)\/R/O'W for j = 1, i.e. for

parameter f,= 0.1, with algorithms B.1 (LS-MP with SRS) and B.2(S-MP with
SRS) fore,, = 0.5 as a function oK = {2, 4, 6, 8, 9, 10, 11, 20, 35, 100}.

6.2.3 Variation of o, value forK = 16

Consider algorithm B.1, i.e. for LS-MP with SRSy fa fixed value of K and
variation of standard deviatiogi,,, as specified in the following table:

Algorithm Values for K Values for o,
B.1 (LS-MP with SRS) K=16 o, = {0.001, 0.01, 0.1, 0.2, 0.4,
0.8,1,2,5,10}

The following two figures present:

The meany( fj) as a function of the parameter indg¢x1,2,... n for each of the
values ofg,, as specified in the above table, and the trueegafior

(f, f, -~ fy)=(0.1 02 04 08 1.6 3.2 6.4 1J.

The normalized standard deviatiou(fj)x/R/JW for each of the parameter
indices j =1,2,... n, as a function ofo, where both the horizontal and vertical

axes are presented in a logarithmic scale.
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Figure 20. Mean u( fj) valuesas a function ofj = 1,2,...n, with algorithm B.1

(LS-MP with SRS) for K = 16 ande,, = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10}.
The red line indicated as ‘Real fj’ represents therue values for f;.

sgm_f*sqgrt(K)/sgm_w (Log
scale)
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B.1 (CL-MP with SRS) and K = 16
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Figure 21. Normalized standard deviation o( fj)\/R/JW for j = 1,2,...np with

algorithm B.1 (LS-MP with SRS) for K = 16 as a function ob,, = {0.001, 0.01, 0.1,
0.2,0.4,0.8,1, 2,5, 10}.

To show the effect of the type of sampling techni@RS or LHS, consider both

algorithms B.1 and B.2, i.e. for LS-MP with SRS drdiS respectively, for the same
fixed value of K and variation of standard deviatian,, as specified in the table

above, that is:

Algorithm

Values for K

Values for oy,

B.1 (LS-MP with SRS; black line) and
B.2 (LS-MP with LHS; red line)

K=16

g, = {0.001, 0.01, 0.1
0.2,04,0.8,1, 2,5, 10}
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The following figure presents:
* The normalized standard deviatim(fj)\/E/JW forj =1, i.e. for parametef,=

0.1, as a function ofg, for algorithm B.1 (i.e. with SRS; black line) and

algorithm B.2 (i.e. with LHS; red line), and whdyeth the horizontal and vertical
axes are presented in a logarithmic scale.

B.1 (LS-MP & SRS; black) & B.2 (LS-MP & LHS; red): f1=0.1, K = 16

1.0E+03

1.0E+02
—&—f1=0.1 SRS

—4&—f1=0.1 LHS

1.0E+01

M C— o—0—20 = T
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sigma_w (Log scale)

sgm_f*sqrt(K)/sgm_w (Log
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Figure 22. Normalized standard deviation o( fj)\/E/aW for j = 1, i.e. for
parameter f,= 0.1, with algorithms B.1 (LS-MP with SRS) and B.2I(S-MP with
SRS) forK = 16 as a function ob,, = {0.001, 0.01, 0.1, 0.2,0.4,0.8, 1, 2, 5, 10}.

6.2.4 Variation of ¢, value forK = 10

Consider algorithm B.1, i.e. for LS-MP with SRSy fa fixed value of K and
variation of standard deviatiog,, as specified in the following table:

Algorithm Values for K Values for 6y
B.1 (LS-MP with SRS) K =10 g, = {0.001, 0.01, 0.1, 0.2, 0.4,
0.8,1,2,5,10}

The following two figures present:
« The meany(f;) as a function of the parameter ind¢x1,2,.. n, for each of

the values ofg,, as specified in the above table, and the trueegdlfior
(f, f, - fg)=(0.1 02 04 08 1.6 3.2 6.4 1I.

e The normalized standard deviatiou(fj)\/E /o, for each of the parameter
indices j =1,2,... h as a function ofo, where both the horizontal and vertical

axes are presented in a logarithmic scale.

22 March 2011 TREN/O7/FP6AE/S07.71574/037180 IFLY Page 63/144



iFly 6" Framework programme Deliverable D7.2f

B.2 (LS-MP with LHS) and K = 10

—e—ow=0.001
15.0000 —&—0ow=0.01
ow=0.1
= 10.0000 : —¢—ow=0.2
@ /\ / —¥—ow=1.6
g 5.0000 A [~ —e—ow=0.8
= —+—ow=1
] e —
9 0.0000 - W /' — gw_g
% T T x T T T T T =
S -5.0000 - 1\4/ 3 4 5 \e/ 7 8 —&—ow=10
—— Real fj
-10.0000

Parameter index j=1,2,...,np=8

Figure 23. Mean y( fj) valuesas a function ofj = 1,2,...n, with algorithm B.2

(LS-MP with LHS) for K = 10 ands,, ={0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10}.
The red line indicated as ‘Real fj’ represents therue values for f;.

B.2 (LS-MP with LHS) and K = 10

——m1=0.1

[=2]
S 1.0E+03 —8—m2=0.2
z m3=0.4
§, _ 1L.OE+02 m4=0.8
n o
2 —¥—m5=1.6
< § M —@— m6=
S 7 1.0E+01 1 I o= m6=3.2
£ ——m7=6.4

|
% 1L OE+00 m8=12.8

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01

sigma_w (Log scale)

Figure 24. Normalized standard deviation o( l?]-)\/R/JW for j = 1,2,...n, with

algorithm B.2 (LS-MP with LHS) for K = 10 as a function ofe,, = {0.001, 0.01,
0.1,0.2,0.4,0.8,1, 2,5, 10}.
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To show the effect of the type of sampling techni@RS or LHS, consider both

algorithms B.1 and B.2, i.e. for LS-MP with SRS didiS respectively, for the same
fixed value of K and variation of standard deviatian,, as specified in the table

above, that is:

Algorithm Values for K | Values for oy,
B.1 (LS-MP with SRS; black line) and | K = 16 o, ={0.001, 0.01, 0.1
B.2 (LS-MP with LHS; red line) 0.2,0.4,0.8,1, 2,5, 10}

The following figure presents:
¢ The normalized standard deviatim(f,-)\/?/aw forj = 8, i.e. for parametef,=

12.8, as a function o, for algorithm B.1 (i.e. with SRS; black line) and

algorithm B.2 (i.e. with LHS; red line), and whdyeth the horizontal and vertical
axes are presented in a logarithmic scale.

B.1 (LS-MP & SRS; black) & B.2 (LS-MP & LHS; red): f8=12.8, K =10

% 1.0E+03
g
2 2 1.0E+02 A
<3 ) —e—{8=12.8 SRS
= N 12,
g §> LOE+01 4% : —A—f8=12.8 LHS
£
3
> 1.0E+00 : : :
1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01

sigma_w (Log scale)

Figure 25. Normalized standard deviation J(fj)\/R/JW for j = 8, i.e. for

parameter f,= 12.8, with algorithms B.1 (LS-MP with SRS) and B.ALS-MP

with SRS) for K = 10 as a function ofe,, = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5,
10}.
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6.2.5 Discussion of results for LS-MP Algorithms B.1 and.2

Here, a summarising discussion is given of theltegwesented in Subsections 6.2.1
through 6.2.4 for LS-MP algorithms B.1 and B.2.

Mean L( fj):
« For 2K <n,: The results show that the smallers, the more inaccurate the
mean L( fj)for j =1,2,.. h,becomes when compared to the true values of

(See Figure 14ndFigure 17).
» Similarly as was observed for CLS Algorithms A.-dak2, the results show that
for most values oK > 9 andoy, the obtained values for the meaf;) approach

the true values off; very accurately, though with the exceptionkobeing too

close toN, or of o, being too large. For example f&r= 9 in Figure 14and in
Figure 17 the obtained values for the me4if;) become inaccurate, similarly for

ow=5 ando, =10 in Figure 20 and Figure 2Bspectively). The larger
ow becomes, the more inaccurate the medr;) for j=1,2,.. h becomes as

can be observed from Figure @@. foro,, = 5 ando,, = 10) and in Figure 23 (i.e.
foroy =2, 5, 10).

Normalized standard deviation o( l?j)\/E/UWZ
* The obtained values foo( fj)\/R/aW for the case that 2K <n, and g, is
small (g,,= 0.0.1) are much larger than for the case khst much larger than,

(See Figure 15). For example:
- for 2< K <n,, the obtained values far( fj)\/E/aW are larger than 0

- for K> 25, the obtained values for( l:j)\/R/JW are smaller than 5.
This effect does not occur for larger valuesif, see Figure 18 foo,,= 0.5.

» Similarly as was observed for CLS Algorithms A.dak2, the results show that
for K close ton, (i.e. for K =9 and less often fdf = 10), the obtained values for
the normalized standard deviation(fj)x/R/aW sometimes become relatively

large (see Figure 15, Figure Xhd Figure 24) in combination with more
inaccuracies in the meagm(f;).

¢ ForK>9 (i.e.K >n, +1), the results show that the lardebecomes the smaller
the obtained values faw( fAj)\/E/O'W for j=1,2,.. n,become. For example in

Figure 15with o, =0.01, the obtained values for the normalizechdded
deviationso*(fj)\/ilaW for K =10 fall within the range 8-16 and fé&= 500

fall within the range 2.2-2.8. In Figure 18th o,, = 0.5, the obtained values for
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the normalized standard deviations Kor 10 fall within the range 7-15 and for

K = 500 fall within the range 2.2-2.8.
For larger values af, (= 0.5), and foK = 9 andK =10 (i.e. forK =n_ +1and

K =n, +2) sometimes the obtained values for the mﬁaﬁj) have large
deviations from the true values d¢f (See Figure 17jand also the obtained

values for the normalized standard deviati@r(sfj)\/E/JW for j=1,2,...n,

turn out to be relatively large (See Figure 18). Munte Carlo simulations
showed that this can happen for both SRS and f@.[Fdr smaller values of,

(= 0.01) this did occur less fisr = 9 and not foK = 10. These inaccuracies
which sometimes occur fdk =n, +1, and less often foK =n_ +2, might be

caused by matrixX,' X, having a high condition number.
ForK = 16 ando, = { 0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 1th¢ values of

the normalized standard deviatioa$f, WK /g, for allj =1,2,... n_, fall within

the range 2.8-5.6 (See Figure 21).
ForK =10 andog,, = { 0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 1th¢ values of

the normalized standard deviatioog fj)\/R/aW for all j=1,2,.. nh in Figure
24 varies betwee® and 147. Fos,, = 2, the obtained values far( fAj)\/E /o,

varies between 48 and 147, whereassfpre 0.1 and 10, the obtained values for
o( fj)\/E/aW are much smaller as they vary between 6 and 11.

LHS versus SRS:

For allK and for alls,, as considered in the simulations, sometimes SBIfsyi
smaller values of the normalized standard deviat'ubhfj)\/E/JW, and

sometimes LHS does (See Figure 16, Figure 19, &igRrand Figure 25).
However no systematic differences can be obsergegden results obtained
with SRS and LHS.
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6.2.6 Discussion of results for CLS Algorithm A.1 versud.S-MP Algorithm B.1

Comparison of simulation results of Algorithms AZACLS with SRS) and B.1 (=LS-

MP with SRS) shows that:
¢ For K>n_, the simulation results show that the algorithmt#hw.S-MP gives

the same values for the meaﬂ(fj) and normalized standard deviations
o( l:j)\/R/JW as CLS does. This can be explained as followshédrMonte Carlo

simulations for algorithms A.1 and B.1 (and siniyafor algorithms A.2 and
B.2) it turned out that matrix," X, had full rank for eactk >n_, which means

that matrix X, X, is invertible. If the matrixX," X, is invertible, then the

Moore-Penrose inverse and inverse coincide by iieim in which case it is
obvious that the results for CLS and LS-MP coindateK >n,.

e ForKcs N, the CLS could not be used.
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6.3 Discussion of results for PLS-N Algorithm C.1 versus LS-MP
Algorithm B.1

Results for NIPALS based PLS (PLS-N) with sampliyjge SRS (i.e. algorithm C.1)
are presented in this subsection and are compaitedLeast Squares with Moore-
Penrose inverse (LS-MP) with sampling type SRS &gorithm B.1).

This subsection is organised as follows:
* In Subsection 6.3.1, we vaty for a fixed value of standard deviatiar), .

* In Subsection 6.3.2, the results obtained in Sulmseé.3.1 for PLS-N algorithm
C.1 and LS-MP algorithm B.1 are discussed.

6.3.1 Variation of K and fixed oy
Consider algorithms B.1 and C.1 for a fixed valtiehe standard deviatiorr,, and

with variation of K , as specified in the following table:

Algorithm Values for K Values for o,
B.1 (LS-MP with SRS) K=1{3,4,68,9,10, 11, 20, 35,6, = 0.5

100}
C.1 (PLS-N with SRS) K=1{3,4,68,9,10, 11, 20, 35,6, = 0.5

100}

For both of these algorithms, the following twouigs present:
« The meany(f;) as a function of the parameter indgx1,2,... n for each of the

values ofK as specified in the above table, and the trueegdior
(f, f, - fy)=(0.1 02 04 08 1.6 3.2 6.4 1I.
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B.1 (LS-MP with SRS) and sigma_w = 0.5

——K=3
14.0 -
~ 120 _
= —m—K=4
*— 10.0
2
c 8.0 —
£ K=6
% 6.0
= 4.0 4 —¢—K=8
g 20 '
= 00 1 o = —8— Real fj
-2.0
1 2 3 4 5 6 7 8

Parameter index j=1,2,...,np=8

Figure 26. Mean u( fj) valuesas a function ofj = 1,2,...n, with algorithm B.1

(LS-MP with SRS) for 6, = 0.5 andK = {3, 4, 6, 8}. The red line indicated as
‘Real fj' represents the true values for f, .

C.1 (PLS-N with SRS) and sigma_w = 0.5

——K=3

14.0

+10.0 - /

g 8.0 K=6

£ 6.0-

2 40 —*%— K=8

c

S 20

2 oo = - —m—Real fj
-2.0 T T T T T T T

1 2 3 4 5 6 7 8

Parameter index j=1,2,...,np=8

Figure 27. Mean ( fj) valuesas a function ofj = 1,2,...n, with algorithm C.1

(PLS-N with SRS) fore,, =0.5 andK = {3, 4, 6, 8}. The red line indicated as ‘Real
fi’ represents the true values for f, .

To compare the difference between the type of etitmapproaches, consider both

algorithms B.1 and C.1, i.e. LS-MP and PLS-N refipely and both with SRS, for
the same fixed value of the standard deviatignand variation ofk , as specified in

the table above, that is:
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Algorithm Values for K Values for 6y
B.1 (LS-MP with SRS; black line) K=4{3,4,68,09 10, 0, =0.5
C.1 (PLS-N with SRS; red line) 11, 20, 35, 100}

The following two figures present:
e The normalized standard deviatim(fj)\/ilaw forj =5, and j = 8 i.e. for

parametersf,= 1.6 and f;= 12.8, as a function oK for algorithm B.1 (i.e. LS-

MP with SRS; black line) and algorithm C.1 (i.e.32N with SRS; red line), and
where both the horizontal and vertical axes aregted in a logarithmic scale.

B.1 (LS-MP & SRS; black) & C.1 (PLS-N & SRS; red): f5=1.6, sigma_w=0.5

1.0E+03

1.0E+02

1.0E+01 -

1.0E+00 \ \
1.0E+00 1.0E+01 1.0E+02

K (Log scale)

sgm_f*sqrt(K)/sgm_w (Log
scale)

Figure 28. Normalized standard deviation o( l?]-)\/R/JW for j = 5, i.e. for
parameter f,= 1.6, with algorithms B.1 (LS-MP with SRS) and C.1FLS-N with
SRS) fore,, =0.5 as a function oK ={3, 4, 6, 8, 9, 10, 11, 20, 35, 100}.

B.1 (LS-MP & SRS; black) & C.1 (PLS-N & SRS; red): f8=12.8, sigma_w=0.5
1.0E+02

1.0E+01 %ﬁﬁ\‘\T
1.0E+00

1.0E+00 1.0E+01 1.0E+02
K (Log scale)

sgm_f*sqrt(K)/sgm_w
(Log scale)

Figure 29. Normalized standard deviation a(fj)\/E/JW for | = 8, i.e. for
parameter f,= 12.8, with algorithms B.1 (LS-MP with SRS) and C.1(PLS-N
with SRS) for e, = 0.5 as a function oK = {3, 4, 6, 8, 9, 10, 11, 20, 35, 100}.
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6.3.2 Discussion of results for PLS-N Algorithm C.1 verss LS-MP Algorithm
B.1

Here, a summarising discussion is given of thelteguesented in Subsection 6.3.1
for PLS-N algorithm C.1 and LS-MP algorithm B.1.

Algorithm C.1 (PLS-N with SRS) versus algorithm B.1(LS-MP with SRS)

The simulation results obtained show that:
« For K <n,, sometimes algorithm B.1 yields smaller valuethefnormalized

standard deviations( l?j)\/E/UW, and sometimes algorithm C.1 does. See for

example Figure 28 which shows that algorithm B.&-(UP with SRS) yields
smaller values foo( fs)\/E/O'W, whereas in Figure 28lgorithm C.1 (PLS-N

with SRS) yields smaller values for( fAs)\/E/JW. The results also show that
forK <n,, algorithms B.1 and C.1 gives different numerigales for the mean

H( fj) (see Figure 26 and Figure 27).
« ForKz=n,, LS-MP and PLS-N give the same numerical resoltstfe

normalized standard deviationg fAj)\/E/O'W (see Figure 28 and Figure 29).
Similarly for K = n_, algorithms B.1 and C.1 gives the same numerigkies for

the meany( fj).

6.4 Comparison of PLS-S Algorithm D.1 versus LS-MP Algorithm B.1

For the comparison of Algorithm D.1 (PLS-S with §R8rsus Algorithm B.1 (LS-
MP with SRS) only the main findings are summarized.

The simulation results obtained (though not inclurtetthis report) have shown that:
« ForK <n,, algorithm B.1 (LS-MP with SRS) and algorithm BRLS-S with

SRS) give the same numerical values for both thaenmg fj) and the
normalized standard deviationg fj)\/R/aW (numerical differences are in the

order 10° or smaller).
+ Similarly, fork = n_, algorithm B.1 (LS-MP with SRS) and algorithm RLS-

S with SRS) give the same numerical values for Huhmeanu( fj) and the
normalized standard deviatioog fj)\/R/aW (numerical differences are in the

order 10° or smaller).
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6.5 Discussion of results obtained

Classical Least Squares (CLS) estimation cannapbpéed if the number of
samplesK is smaller or equal than the number of regresstonponents, . For the

CLS algorithm withK >n_, the Monte Carlo simulations show that:
« ForK close ton, (in particular forK =n, +1 andK =n, +2), the CLS results
become inaccurate, i.e. the obtained values fomiban 1/( fj) become

inaccurate, and the obtained values for the nomedlstandard deviation
o( fj)\/R/JW can become relativey large. This effect is eveongfer when in

combination with large values 6§,. These inaccuracies are caused by an ill-
conditioned matrixX, X,.

« ForK>n, +2,the CLS results show that the mqahfj) for
] =1,2,.. n,approach the true values 6fvery accurately and the larger is,
the smaller the normalized standard deviatix(rfAj)x/R/JW for
j=1,2,.. n,becomes. So for this case the CLS algorithm isblétto determine
estimatorF" =(f,, f,;--, fnp).

« Forall K=n,, no systematic differences can be observed betveserts

obtained with SRS and LHS, as sometimes SRS yssiddler values of the
normalized standard deviatiows(fj)\/ﬁlaw, and sometimes LHS does.

Alternative approaches LS-MP, PLS-N and PLS-S Heeen applied, and the results
show that for each value Kf>n_, algorithms with LS-MP, PLS-N and PLS-S give

numerically the same results as CLS does. For LSalso follows from theory,
since in case the inverse of matd X, exists, then the Moore-Penrose inverse and
inverse coincide by definition. And fdf < n_ the results show that
* In contrast to CLS, algorithms with LS-MP, PLS-NJaPLS-S can also be applied
forK <n,, and the smallef is, the more the mean( fj) deviates from real
value of f; for j=1,2,.. n,.
* Both LS-MP and PLS-S algorithms give the same nigakvalues for the mean
H( fj) and normalized standard deviation l?j)\/E/UW, for K<n,.
* The PLS-N algorithm gives different values for theam x( fj) and normalized
standard deviatiow( fAj)\/E/O'W for K <n, when compared to LS-MP and PLS-

S. No systematic differences can be observed battieeresults of PLS-N when
compared to LS-MP and PLS-S, as sometimes PLS{Nsysnaller values of the
normalized standard deviatiows(fj)\/ﬁlaw, and sometimes LS-MP and PLS-S

do.
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Regarding sampling types SRS and LHS the resubtw shat

» For all values oK, no systematic differences can be observed betveseitts
obtained with SRS and LHS, as sometimes SRS ysaiddler values of the
normalized standard deviationg fj)x/R/aW, and sometimes LHS does.

Solely based on the numerical results for LS-MPSHLand PLS-S, no specific

conclusion can be drawn which of the three appresichpreferred. Another aspect

that can be considered is the calculation spedgediree approaches:

» The Moore-Penrose inverse is time-consuming forelangtrices [Courrieu,
2005]; see also Subsection 3.4 in this report.

» The SIMPLS approach directly finds weight vectorsohlare applied to the
original matrixX, and without explicit computation of matrix invess

» SIMPLS is also faster than PLS-N ([Alin, 2009]; sds0 Subsection 3.5 in this
report.

* The PLS-S algorithm is the fastest when compare®GtvP [Courrieu, 2005]
and PLS-N [De Jong, 1993], [Alin, 2009].

Thus PLS-S is computationally the best. PLS-S wRs%i.e. Algorithm D.1) will be

considered in more detail in Section 7 with the sangonsider the effect of the values

for the standard deviatiod, and the effect ok on the meanu( fj) and the

normalized standard deviatiowg l:j)\/R/JW.
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7 Effect of K and oy,
In this section, the effect of standard deviatmnand K, on the normalized standard

deviationso ( fj)\/E/UW for j=1,2,.. n,, will be analysed for PLS-S with sampling

type SRS (i.e. Algorithm D.1). In this section fielowing is discussed:
* Results for PLS-S with SRS algorithm D.1 with vada of K in Subsection 7.1.

* Results for PLS-S with SRS algorithm D.1 with vaaa of standard deviation
o,, in Subsection 7.2.

* A summarising discussion about the effect of steshdi@viationo, and number

of sampleK on PLS-S algorithm D.1 is given in Subsection 7.3.

7.1 PLS-S Algorithm D.1 and variation of K

Results for algorithm D.1, i.e. PLS-S with SRS, foed value of the standard
deviationo,, and with variation oK , are presented in the three subsections hereafter

for low, high and very high values far, (0.01, 0.5 and 10) respectively.

This subsection is organised as follows:
* In Subsection 7.1.1, we vaty for a fixed low value of standard deviatior),.

* In Subsection 7.1.2, we vaty for a fixed high value of standard deviatior).

* In Subsection 7.1.3, we vag for a fixed very high value of standard deviation
o,

w*

7.1.1 Variation of K and fixed low value ofe,,

Consider algorithm D.1, i.e. PLS-S with SRS, foffixeed value of the standard
deviationo,, and with variation ofK , as specified in the following table:

Algorithm Values for K Values for oy,

D.1 (PLS-S with SRS)| K={4, 6, 8, 9, 10, 25, 50, 100oc, = 0.01
500, 1000}

D.1 (PLS-S with SRS)| K={2, 4, 6, 8, 9, 10, 11, 20, 35p¢, =0.01
100}

D.1 (PLS-S with SRS)| K= {100, 300, 600, 800, 1000o, =0.01
3000, 5000, 10000, 30000, 50000}

The following three figures present:
« The normalized standard deviation aff)), i.e. U(fj)\/R/JW, for each of the

parameter indiceg =1,2,... n as a function ofK where both the horizontal and
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vertical axes are presented in a logarithmic scabel, with assumed values for
(f, f, -~ fy)=(0.1 02 04 08 1.6 3.2 6.4 1I.

The three figures present the results for threeewdifft scales of the horizontal
axis, representing the axis for tievalues.

For g, =0.01 anK = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000}

D.1 (PLS-S with SRS) and sigma_w = 0.01

—e—m1=0.1
§’ 1.0E+04 —#—m2=0.2
5 1.0E+03 4 m3-o.4

O+ =
g)' ! m4=0.8
2% 10E+02 —K—m5=1.6
<9 —0—m6=3.2
#  1.0E+01 A ——m7=6.4
| =) s oz
£ = v i m8=12.8
> 1.0E+00 : : —

1.0E+00 1.0E+01 1.0E+02 1.0E+03

K (Log scale)

Figure 30. Normalized standard deviation o( fj)\/R/JW for j = 1,2,...np with

algorithm D.1 (PLS-S with SRS) fore,, = 0.01 andK = {4, 6, 8, 9, 10, 25, 50, 100,
500, 1000}.

Similar, though on a smaller horizontal axis, cg.= 0.01 anK ={2, 4, 6, 8, 9, 10,
11, 20, 35, 100}:

D.1 (PLS-S with SRS) and sigma_w = 0.01

——m1=0.1
g 10E+04 —8—m2=0.2
Z 1.0E+03 L m3=0.4
) ﬁ m4=0.8
<8 1.0E+02 —¥—m5=1.6
£° ~ —8—m6=3.2
£ LOE+0L M = L |—+—m7=64
S  1.0E+00 : e = ) m8=12.8

1.0E+00 1.0E+01 1.0E+02

K (Log scale)

Figure 31. Normalized standard deviation o( fj)\/R/JW for j = 1,2,...n, with

algorithm D.1 (PLS-S with SRS) fore,, = 0.01 andK ={2, 4, 6, 8, 9, 10, 11, 20,
35, 100}.
22 March 2011 TREN/07/FPBAE/S07.71574/037180 IFLY Page 76/144



iFly 6" Framework programme Deliverable D7.2f

Similar, though on a larger horizontal axis, i@. &, = 0.01 andK = {100, 300, 600,
800, 1000, 3000, 5000, 10000, 30000, 50000}:

D.1 (PLS-S with SRS) and sigma_w = 0.01

——m1=0.1
g LOE+02 —8—m2=0.2
EI m3=0.4
E m4=0.8
n O
S § 1.0E+01 - —%—m5=1.6
£° —8—m6=3.2
gl %g«;gs!—%ﬁ—;% ——m7=6.4
S 1.0E+00 : : : : m8=12.8

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05

K (Log scale)

Figure 32. Normalized standard deviation o( l:j)\/R/JW for j = 1,2,...np with

algorithm D.1 (PLS-S with SRS) fore,, = 0.01 andK = {100, 300, 600, 800, 1000,
3000, 5000, 10000, 30000, 50000}.

Discussion of results for small valueg,, = 0.01

The simulations for algorithm D.1 (PLS-S with SRS}wo,, = 0.01show that:

* For2< K<8 (i.e.K<ny), the values of o( fj)x/E/JWare within the range of
180-780.

« ForK =9 (i.e.K =nyt+1), the values ofo( l:j)\/R/JW variy from from 23 to very

high (in the figure above the maximum is aroun8 - 1.0°, though other

simulations show that it can even be around B39.
« ForK>9 (i.e.K >ny+1), the values ofo( fj)\/E/aW do not really converge,

although the range in which they fall is small, a# fall within the range 2.2-3.1.
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7.1.2 Variation of K and fixed high value ofe,,

Consider algorithm D.1, i.e. PLS-S with SRS, foffixed value of the standard
deviationo,, and with variation oK, as specified in the following table:

Algorithm Values for K Values for o,

D.1 (PLS-S with SRS)| K={4, 6, 8, 9, 10, 25, 50, 1005, =0.5
500, 1000}

D.1 (PLS-S with SRS)| K={2, 4, 6, 8, 9, 10, 11, 20, 3506, =0.5
100}

D.1 (PLS-S with SRS)| K = {100, 300, 600, 800, 1000o, =0.5
3000, 5000, 10000, 30000, 50000}

The following three figures present:
+ The normalized standard deviation off)), i.e. U(fj)\/R/JW, for each of the

parameter indiceg =1,2,... n as a function ofK where both the horizontal and

vertical axes are presented in a logarithmic scabel, with assumed values for
(f, f, -~ fy)=(0.1 02 04 08 1.6 3.2 6.4 1J.

The three figures present the results for threeewdifft scales of the horizontal
axis, representing the axis for tievalues.

For o, =0.5anK = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000}

D.1 (PLS-S with SRS) and sigma_w = 0.5

——m1=0.1
35’ 1.0E+04 ——m2=0.2
% 1.0E+03 X m3=0.4
E m4=0.8

[}
2% 1.0E+02 - I\ —%—m5=1.6
=3 | \ —0—m6=3.2
= e L& =3.
£| 10E+01 | ;‘*. N A -~ e m7:64
£ = = == _
S 1.0E+00 : ‘ ! mg=12.8
1.0E+00 1.0E+01 1.0E+02 1.0E+03

K (Log scale)

Figure 33. Normalized standard deviationo( fj)\/E/anor 1=1,2,...np with

algorithm D.1 (PLS-S with SRS) fore,, = 0.5 andK = {4, 6, 8, 9, 10, 25, 50, 100,
500, 1000%}.
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Similar, though on a smaller horizontal axis, f@&. g, = 0.5 anK = {2, 4, 6, 8, 9,
10, 11, 20, 35, 100}:

D.1 (PLS-S with SRS) and sigma_w = 0.5

—e—m1=0.1
2 10E+04 —8—m2=0.2
%/ 1.0E+03 m3=0.4
% - m4=0.8
2% LOE+02 - —¥—m5=1.6
£° —8—m6=3.2
£ 1OE+014 - —+—m7=6.4
S 1.0E+00 : - — T m8=12.8

1.0E+00 1.0E+01 1.0E+02

K (Log scale)

Figure 34. Normalized standard deviation o( fj)\/R/JW for j = 1,2,...Np with

algorithm D.1 (PLS-S with SRS) fore, = 0.5 andK = {2, 4, 6, 8, 9, 10, 11, 20, 35,
100}.

Similar, though on a larger horizontal axis, i@. &, = 0.5 and = {100, 300, 600,
800, 1000, 3000, 5000, 10000, 30000, 50000}:

D.1 (PLS-S with SRS) and sigma_w = 0.5

—e—m1=0.1
z m3=0.4
% - m4=0.8
§~ § 1.0E+01 —X¥—m5=1.6
£° —8—m6=3.2
:‘fl = e = ——m7=6.4
£ _
>  1.0E+00 ; ‘ : ‘ m8=12.8

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05

K (Log scale)

Figure 35. Normalized standard deviation o( fj)\/R/JW for j = 1,2,...n, with

algorithm D.1 (PLS-S with SRS) fore, = 0.5 andK = {100, 300, 600, 800, 1000,
3000, 5000, 10000, 30000, 50000}.
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Discussion of results for high values,, = 0.5

The simulations for algorithm D.1 (PLS-S with SRS)wo,, = 0.5show that:

* For2< K <8 (i.e.K<np), the values ofo( l?j)\/E/UW are within the range of
4-33.

+ ForK =9 (i.,eK =ny+1), the values ofo( fj)x/R/aW varies from from 17 to
very high (in the figure above the maximum is a@ar8- 10°).

+ ForK >9 (i.e.K >ny+1), the values ofo( fj)x/R/aW do not really converge to

some fixed number, but instead converge to a randewithin this range they
can vary, the range is 2.0-2.9.
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7.1.3 Variation of K and fixed very high value ofo,,

Consider algorithm D.1, i.e. PLS-S with SRS, foffixed value of the standard
deviationo,, and with variation oK, as specified in the following table:

Algorithm Values for K Values for o,

D.1 (PLS-S with SRS)| K={4, 6, 8, 9, 10, 25, 50, 100, =10
500, 1000}

D.1 (PLS-S with SRS)| K={2, 4, 6, 8, 9, 10, 11, 20, 35p, =10
100}

D.1 (PLS-S with SRS)| K = {100, 300, 600, 800, 1000o, =10
3000, 5000, 10000, 30000, 50000}

The following three figures present:
+ The normalized standard deviation off)), i.e. U(fj)\/R/JW, for each of the

parameter indiceg =1,2,... n as a function ofK where both the horizontal and

vertical axes are presented in a logarithmic scabel, with assumed values for
(f, f, -~ fy)=(0.1 02 04 08 1.6 3.2 6.4 1J.

The three figures present the results for threeewdifft scales of the horizontal
axis, representing the axis for tievalues.

Foro, =10 anK = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000}:

D.1 (PLS-S with SRS) and sigma_w = 10

——m1=0.1
35’ 1.0E+04 ——m2=0.2
% 1.0E+03 m3=0.4
% - m4=0.8
2§ 1.0E+02 - —%—m5=1.6
£° —8—m6=3.2
£ 1OE+014 - _ | |——m=64
S 1.0E+00 : -3 alN m8=12.8

1.0E+00 1.0E+01 1.0E+02 1.0E+03

K (Log scale)

Figure 36. Normalized standard deviation g( fj)\/E/aW for j = 1,2,...ny, with

algorithm D.1 (PLS-S with SRS) fore, = 10 andK = {4, 6, 8, 9, 10, 25, 50, 100,
500, 1000%}.
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Similar, though on a smaller horizontal axis, fe&. o, = 10 anK = {2, 4, 6, 8, 9,

10, 11, 20, 35, 100}:

D.1 (PLS-S with SRS) and sigma_w = 10

o  1.0E+04 —é—mi=0.1
= ——m2=0.2
;I 1.0E+03 m3=0.4
£ ] _
> = 1.0E+02 iy m4=0.8
zg ~ —¥—m5=1.6
£ @ 1.0E+01 | /,:/:} S —8—m6=3.2
o I 4: -
»*‘fl 1.0E+00 - ___— —+—m7=6.4
£ me=12.8
»  1.0E-01 ;

1.0E+00 1.0E+01 1.0E+02

K (Log scale)

Figure 37. Normalized standard deviation o( fj)\/E/aW for j = 1,2,...np with

algorithm D.1 (PLS-S with SRS) fore, = 10 andK = {2, 4, 6, 8, 9, 10, 11, 35,
100}.

Similar, though on a larger horizontal axis, i@ &, = 10 andK = {100, 300, 600,
800, 1000, 3000, 5000, 10000, 30000, 50000}:

D.1 (PLS-S with SRS) and sigma_w = 10

2 10E+02 —e—m1=0.1
3 —®—m2=0.2
=

| =i
- m3=0.4
g3 ) oeso1 m4=0.8
=T 1.0E+ i
€38 —%—m5=1.6
g = —@—m6=3.2
4 e SR ——m7=6.4
% 10E+00 T T T T m8:128

1.0E+00 1.0E+01 1.0E402 1.0E+03 1.0E+04 1.0E+05

K (Log scale)

Figure 38. Normalized standard deviation o( fj)\/E/aW for j = 1,2,...np, with

algorithm D.1 (PLS-S with SRS) fore, = 10 andK = {100, 300, 600, 800, 1000,
3000, 5000, 10000, 30000, 50000}.
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Discussion of results for very high valuer,, = 10

The simulations for algorithm D.1 (PLS-S with SRS¥wo,, = 20show that:

* For2< K<8 (i.e.K <np), the values ofo( l?j)\/E/UW are within the range of
0.4-20.

* ForK =9 (i.e.K =nyt+1), the values ofo( l:j)\/R/JW varies from from 17 to
very high (in the figure above the maximum is a@@t7- 10°).

 ForK>9 (i.e.K>nyt+1), the values ofo( l:j)\/R/JW do not really converge to

some fixed number, but instead converge to a randewithin this range they
can vary, the range is 2.0-3.0.
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7.2 PLS-S Algorithm D.1 and variation of oy,

Results for algorithm D.1, i.e. PLS-S with SRS, fored value of K and with
variation of the standard deviatian,, are presented in the two subsections hereafter

for K=n, +1and forK <n, respectively.

This subsection is organised as follows:
* In Subsection 7.2.1, we vary standard deviatgnfor a fixed K .

* In Subsection 7.2.2, we vary standard deviatignfor a fixed low value oK.
For an overall discussion about the effects of lthéhstandard deviatioa,, and the

number of samplels on PLS-S algorithm D.1 the reader is referredubs®ction 7.3.

7.2.1 Variation of o, and fixed valueK > np+1

Consider algorithm D.1, i.e. PLS-S with SRS, forfieed value of K and with
variation of the standard deviatiar,, as specified in the following table:

Algorithm Values for K | Values for o,

D.1 (PLS-S with SRS)| K=9 o, ={0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100,
1000 }

D.1 (PLS-S with SRS)| K = 10 o, ={0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100,
1000 }

D.1 (PLS-S with SRS)| K =11 o, ={0.001,0.01,0.1, 1, 2, 4, 8, 10, 100,
1000 }

D.1 (PLS-S with SRS)| K = 12 o, ={0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100,
1000 }

D.1 (PLS-S with SRS) | K = 32 o, ={0.001,0.01,0.1, 1, 2, 4, 8, 10, 100,
1000 }

D.1 (PLS-S with SRS) | K = 1000 o, ={0.001,0.01,0.1, 1, 2, 4, 8, 10, 100,
1000 }

The following figures present:
+ The normalized standard deviation a{f)), i.e. U(fj)\/R/O'W, for fixed values

of K > ny+1 as specified in the above table for each of gaeameter indices
j=12,.. n,as a function ofo,, where both the horizontal and vertical axes are

presented in a logarithmic scale, and with assuwakges for
(f, f, - fg)=(0.1 02 04 08 1.6 3.2 6.4 1I.
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* For K= 32 two additional figures are presented, i.e. dbgesponding standard

deviation a(ﬂ) for each j=1,2,.. n, as a function ofg, where both the

horizontal and vertical axes are presented in arlthgnic scale; and the
corresponding meag( f;) as a function of the parameter numjer1,2,... n,.

ForK =9 andg, = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 100€h¢ values of
o( fj)\/E/UW can vary from low to very high (in the figure thisfrom 2- 10" to
2-10%:

D.1 (PLS-S with SRS) and K = 9

——m1=0.1
S  1.0E+04 ——m2=0.2
—
Y m3=0.4
CE,,I 1.0E+03 - /\ ?\\ m4=0.8
e
<L = ] —— =1.
< g L0E02 N F————2 nows
To " - —8—m6=3.2
@ 1.0E+01 ——m7=6.4
al
£ =12.
> 1.0E+00 - m8=12.8

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03

sigma_w (Log scale)

Figure 39. Normalized standard deviation o( fj)\/E/JW for j = 1,2,...np with

algorithm D.1 (PLS-S with SRS) fork = 9 ande,, = {0.001, 0.01, 0.1, 1, 2, 4, 8, 10,
100, 1000

For K = 10 ando, = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 100€h¢ values of
o( fj)\/R/aW vary from 8.4 to 35.7n the figure below:

D.1 (PLS-S with SRS) and K = 10

——m1=0.1
g  LOE+04 —8—m2=0.2
3 1.0E+03 ms=0.4

| .OE+

£ m4=0.8
2§ 1.0E+02 —¥—m5=16
Rz =
& L a B = @ |—®—m6=32
£ Lom01 0 —+—m7=6.4
E =
> 1.0E+00 mg=12.8

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03

sigma_w (Log scale)

Figure 40. Normalized standard deviation og( fj)\/E/aW for j = 1,2,...np with

algorithm D.1 (PLS-S with SRS) forK = 10 ande,, = {0.001, 0.01, 0.1, 1, 2, 4, 8,
10, 100, 1000.
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ForK = 11 ando, = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 100€h¢ values of
o( fj)\/R/aW vary between 5-19:

D.1 (PLS-S with SRS) and K = 11

. ——m1=0.1
g 1.0E+04 ——m2=0.2
2 _

- 1.0E+03 m3=0.4
= m4=0.8
g 10E+02 —%—m5=1.6
g LO0E+01 = = e S G | —®—M6=3.2
N—I M J—

E  1.0E+00 - : m7=6.4
@ 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 m8=12.8

sigma_w (Log scale)

Figure 41. Normalized standard deviation o( fj)\/E/JW for j = 1,2,...np with

algorithm D.1 (PLS-S with SRS) forK = 11 ande,, = {0.001, 0.01, 0.1, 1, 2, 4, 8,
10, 100, 100Q.

ForK = 12 ando, = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 100€h¢ values of
o( fj)\/R/aW vary between 4.1-11.5:

D.1 (PLS-S with SRS) and K = 12

——m1-0.1
2 1.0E+04 —®—m2=0.2
|
~ m3=0.4
21 1.0E+03 h4=0.8
) —%—m5=1.6
S @.0E+02
3 —@—m6=3.2
o —
7 10E+01 g _ B P e |—+m=64
o » —__—— " - *T m8=12.8
S 1.0E+00 - ‘ ‘ |

1.0E-03 1.0E-02 1.0E-01 1.0E400 1.0E+01 1.0E402 1.0E+03

sigma_w (Log scale)
Figure 42. Normalized standard deviation o( fj)\/R/JW for j = 1,2,...np with

algorithm D.1 (PLS-S with SRS) forK = 12 ande,, = {0.001, 0.01, 0.1, 1, 2, 4, 8,
10, 100, 1000.
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ForK = 32 andg, = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 100€h¢ values of
o( fj)\/R/aW vary between 2.4-3.6:

D.1 (PLS-S with SRS) and K = 32

——m1=0.1

S 1.0E+04 —8—m2=0.2
H m3=0.4

|
% 1.0E+03 s
S L0E+02 K—m5=1.6
£° ——m6=3.2
g 1.0E+01
£ ——m7=6.4
o = = = Sum e, o — -
E  1.0E+00 - ‘ ‘ ‘ ‘ ‘ ! m8=12.8
(2]

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03

sigma_w (Log scale)

Figure 43. Normalized standard deviation o( fj)\/R/JW for j = 1,2,...n, with

algorithm D.1 (PLS-S with SRS) forK = 32 ande,, = {0.001, 0.01, 0.1, 1, 2, 4, 8,
10, 100, 1000.

and corresponding standard deviat'm)hf ) is

D.1 (PLS-S with SRS) and K = 32

1.0E+03

§ 1o , /2/74/. i IEZSQ

3 1.0E+01 '/_/1;'7/ 1304

“% % 1.0E+00 //_.:.;./"‘( M4=0.8

g o 1.0E-01 '

3 10e02 /% i”ﬁflﬁ

T 1.0E-03 m—ou m6=3.2

D 0E-04 ‘ ‘ ‘ ‘ ‘ ——m7=6.4
1.0E-03 1.0E-02 1.0E-01 1.0E+00  1.0E+01  1.0E+02  1.0E+03 m8=12.8

sgm_wi/sqrt(K)

sigma_w (Log scale)

Figure 44. Standard deviation o( fj)for J = 1,2,...np with algorithm D.1 (PLS-S
with SRS) for K = 32 ande,, = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 }.

22 March 2011 TREN/O7/FP6AE/S07.71574/037180 IFLY Page 87/144



iFly 6" Framework programme Deliverable D7.2f

and corresponding meagm fj) is

D.1 (PLS-S with SRS) and K = 32

—e—ow=0.001

14.0 —8—ow=0.01
5 120 ow=0.1
E 10.0 —¢—ow=1
€ 80- —¥—ow=2
Z‘.”Z 2'8 . — —0—0Wi4
g —+—ow=8
8 2.0 A W ——ow=10
= 007 ow=100

20 ‘ ‘ ‘ ‘ ‘ ‘ ‘ —&— Real fi

1 2 3 4 5 6 7 8

Parameter index j=1,2,...,Np=8

Figure 45. Mean ( fj) valuesas a function ofj = 1,2,...n, with algorithm D.1

(PLS-S with SRS) forK = 32 ande,, ={0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100}. The
red line indicated as ‘Real fj' represents the truevalues for f; .

Note that in Figure 48hemean y( fj) values forg,, = 1000are not shown since they

are very inaccurate and the figure would becomeaduable.

For K = 1000 ando,, = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 100th¢ values of
o( fj)\/R/aW vary between 2.1 -2.9:

D.1 (PLS-S with SRS) and K = 1000

——m1=0.1
g LOE+04 —8—m2=0.2
3 1.0E+03 m3=0.4

| . + B

E m4=0.8
S L0E+02 —¥—m5=1.6
g —@—m6=3.2
@  1.0E+01 ——m7=6.4
| e - Py . EE e = "
E = 2 =
>  1.0E+00 - - - | me=12.8

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03

sigma_w (Log scale)

Figure 46. Normalized standard deviation o( fj)\/R/JW for j = 1,2,...np with

algorithm D.1 (PLS-S with SRS) forK = 1000 ands,, = {0.001, 0.01, 0.1, 1, 2, 4, 8,
10, 100, 1000.
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7.2.2 Variation of o, and low valueK = 6 (< n,)

Consider algorithm D.1, i.e. PLS-S with SRS, foffibeed value of K and with
variation of the standard deviatiar,, as specified in the following table:

Algorithm Values for K | Values for e,

D.1 (PLS-S with SRS)| K=6 o, ={0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100,
1000 }

D.1 (PLS-S with SRS)| K=6 o,={0.1, 02, 05, 1, 2, 5, 10, 20, 50,
100}

D.1 (PLS-S with SRS)| K=6 o, ={ 0.001, 0.002, 0.005, 0.01, 0.02,
0.05,0.1,0.2,0.5,1}

For each of these three cases, two figures areess below:
« The normalized standard deviation of f)), i.e. J(fj)\/E/O'W, for K= 6 for

each of the parameter indicgs=1,2,... h as a function ofo,, where both the

horizontal and vertical axes are presented in arltignic scale, and with assumed
values for
(f, f, -~ fy)=(0.1 02 04 08 1.6 3.2 6.4 1I.

* The corresponding standard deviatianfj) for eachj=1,2,.. n  as a function
of g, where both the horizontal and vertical axes aesgmted in a logarithmic
scale.
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For K=6 ando, ={0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 }:

1.0E+04

1.0E+03

1.0E+02

1.0E+01

sgm_f*sqrt(K)/sgm_w (Log
scale)

1.0E+00

D.1 (PLS-S with SRS) and K = 6

T~

1.0E-03

1.0E-02

1.0E-01 1.0E+00 1.0E+01 1.0E+02

sigma_w (Log scale)

1.0E+03

Deliverable D7.2f

——ml1=0.1
—#—m2=0.2
m3=0.4
m4=0.8
—X¥—m5=1.6
—8— m6=3.2
—+—m7=6.4
m8=12.8

Figure 47. Normalized standard deviation o( fj)\/R/JW for j = 1,2,...np with

algorithm D.1 (PLS-S with SRS) forK = 6 ande,, = { 0.001, 0.01, 0.1, 1, 2, 4, 8,
10, 100, 1000 }.

and corresponding figure for standard deviationsrblfj) is
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D.1 (PLS-S with SRS)and K =6
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Figure 48. Standard deviationo( fl.) for j = 1,2,...np with algorithm D.1 (PLS-S

with SRS) for K = 6 andey, = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 }.
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Similar, though on a smaller horizontal axis, fe.K = 6 ando,, = { 0.1, 0.2, 0.5, 1,

2,5, 10, 20, 50, 100 }:

D.1 (PLS-S with SRS) and K = 6

1.0E-01 1.0E+00 1.0E+01 1.0E+02

sigma_w (Log scale)

—e—m1=0.1

S  1.0E+02 T ——m2=0.2
2
= m3=0.4
£ m4=0.8
7 =
S '® 1.OE+01 —K—m5=16
= »n =9.
£ ~a_ 7 _ —8—m6=3.2
o = —+—m7=6.4

|
£ =12.
> 1.0E+00 ‘ ‘ | mg=12.8

Figure 49. Normalized standard deviation o( fj)\/R/JW for j = 1,2,...n, with

algorithm D.1 (PLS-S with SRS) forK = 6 ande,, = { 0.1, 0.2, 0.5, 1, 2, 5, 10, 20,

50, 100 }.

and corresponding figure for standard deviationsroﬁj) IS

D.1 (PLS-S with SRS) and K = 6

o 1.0E+03
g L
= 10E+02 -y
s 2 = ——
< 3 LOE+00 /
[]
S LOE0L —=—
»  1.0E-02 : :
1.0E-01 1.0E+00 1.0E+01 1.0E+02

sigma_w (Log scale)

——m1=0.1
——m2=0.2
m3=0.4
m4=0.8
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—+—m7=6.4
m8=12.8

Figure 50. Standard deviationo( fj) for j = 1,2,...Np with algorithm D.1 (PLS-S

with SRS) forK = 6 ande,, = { 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100 }.
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Similar, though forg,, < 1, i.e. forg, = { 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1,

0.2,05,1}
D.1 (PLS-S with SRS) and K = 6

—e—m1=0.1
S 1O0E+04 — B m2=0.2
;| 1.0E+03 ms=04
E m4=0.8
2% LOE+02 - —K—m5=16
T o —0—m6=3.2
g 10401 ——m7=6.4

|
% 1.0E+00 ‘ ‘ | m8=12.8
1.0E-03 1.0E-02 1.0E-01 1.0E+00

sigma_w (Log scale)

Figure 51. Normalized standard deviation og( fj)\/E/aW for j = 1,2,...np with

algorithm D.1 (PLS-S with SRS) forK = 6 ande, = { 0.001, 0.002, 0.005, 0.01,
0.02,0.05,0.1,0.2,0.5,1}.

and corresponding figure for standard deviationsrblfj) is

D.1 (PLS-S with SRS) and K = 6

o  1O0E+02 —e—m1=0.1

o

<  1.0E+01 i _ _ _ _ _ _ - _ J_ —#—m2=0.2

3 _ 1.0E+00 = L E— — e = m3=0.4

) ____—T

g/ © 1.0E-01 m4=0.8

3 © 1.0E-02 - / —%—m5=1.6

5 LOE03 {— —8—m6=3.2

2 1.0E-04 ‘ ‘ —+—m7=6.4

1.0E-03 1.0E-02 1.0E-01 1.0E+00 m8=12.8
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Figure 52. Standard deviationo( fj) for j = 1,2,...np with algorithm D.1 (PLS-S
with SRS) forK = 6 ande,, ={ 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.2, 0.5, 1}.
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Discussion of results foK = 6

The simulations for algorithm D.1 (PLS-S with SRSjwK = 6, the results show
that:
« Foro, <1, the obtained values for the standard deviatbres( ;) all fall

within the range 2.1-3.2 (see Figure 52), and titained values for
o( fj)\/R/JW increase with decreasing, (see Figure 51).

» It turns out that foro,, getting smallerg( fAj)\/E/O'W becomes extremely high.
This can be explained by a division by, for g, — 0 with K = 6 and finite
values foro( fl.) , Which implies thato( l:j)\/R/JW - 0,

« Forog, > 10, the values foo( fj)\/E/aW do not really converge to some fixed

number, but instead converge to a range and withérrange they can vary, the
range is 2.3-4.2 (See Figure 47 and Figure 49).

7.3 Discussion of results obtained
The effect of standard deviatiogr, and number of samplek on the normalized

standard deviatiom(lf)\/ilaW where F' =(f1 f, - fnp), has been analysed
for PLS-S Algorithm D.1.

The main findings are:
« For K large enough and such th& >n_ +1, the Monte Carlo simulations

showed that the standard deviaticm(sfj) for all j=1,2,... n, are proportional
to standard deviatiow,, and inversely proportional to the square rooKofThe
values ofo( l?j)\/E/UW for K large enough all fall within some ‘converging drea

(i.e. for K=1000, the range is 2.1-2.9), though within thigea there is no

convergence; the ‘converging area’ is independdnthe value of standard
deviation g,,. Only in caseo, has extremely high values (e.g,, = 100 and

o,, = 1000 in Figure 45), the meauw( fj) becomes inaccurate.
¢ For K=n,+1, the values foro( l:j)\/R/JW can become rather high (i.e. more

than 16) and this is independent of the valueaf, although for higher values
of g, this effect occurred more often. Similarly, f&r=n_+2, the values for

o( fj)\/E/aW can also become rather high, though this occulesd often
compared toK =n, +1.
e For K< n,, it turned out that the small&r is, the more inaccurate the obtained

values for the meanu( fj)for j=12,.. n, become when compared to the true
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values of f;. Considering values of, for K <n_, it turns out that there is a

difference between small values of, (say smaller than 1) or larger values of

values ofg,, (say larger than 10):

For small values ot i.e. for g, < 1:

- the obtained values for the standard deviatia(1§j) for j=1,2,.. n, forthe
case thatK < n, all fall within a low range (e.g. fd{ = 6, the range is 2.1-
3.2), and

- the obtained values far( f j)\/R / g, increase with decreasing,. The
smallerg,, becomes foK = 6, it turns out thatr( l:j)\/R/JW becomes

extremely high.
For large values of,,, i.e. forg,, > 10:

- the obtained values for values fa( fAj)\/E/O'W do not really converge to

some fixed number, but instead converge to a randewithin this range they
can vary, for example fdf = 6, the range is is 2.3-4.2.
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8 Effect of large value for n,

In this section, the effect of a large value foe tiumber of parameters will be
analysed for PLS-S with sampling type SRS (i.e.ofithm D.1) and how it relates to
LS-MP with sampling type SRS (i.e. Algorithm B.1).

In this section it is assumed that the number capatersn, = 200, for this value the
following is discussed:

* Results for Algorithms B.1 versus D.1 with variatiof K in Subsection 8.1.
* Results for Algorithms B.1 versus D.1 with variatiof standard deviatiow,, in

Subsection 8.2.
* A summarising discussion is given in Subsection 8.3

8.1 Algorithm B.1 (LS-MP) vs. Algorithm D.1 (PLS-S) and variation of K

Results for algorithms B.1 (LS-MP with SRS) and QRALS-S with SRS) with
n, =200, for fixed value of the standard deviatian, (i.e. o,=0.5) and with

variation of K , are presented in the subsection hereafter.

8.1.1 Variation of K and fixed value ofe,, (=0.5)
Consider algorithms B.1 and D.1, for a fixed vatdehe standard deviatioda,, and
with variation of K , as specified in the following table:

Algorithm Values for K Values for o,

B.1 (LS-MP wirh SRS)| K = {10, 20, 40, 50, 100, 160, 175g, = 0.5
D.1 (PLS-S with SRS)| 200, 250, 500}

B.1 (LS-MP wirh SRS)| K = {150, 160, 170, 180, 190, 200¢,, = 0.5
D.1 (PLS-S with SRS)| 201, 220, 500, 1000}

The following three figures present the normalizexhdard deviation otr( fj), i.e.
o( ]?j)\/R/O'W, as a function ofK where both the horizontal and vertical axes are

presented in a logarithmic scale,

» for Algorithm B.1 for a selection of parameter iog$, i.e. for
j =1,27,53,79,105,131,157,183,= (2l and with assumed values fof,

(f, fn, fg - fu)=(0.1 1.7 32 48 63 7.9 94 11 };

for Algorithm D.1 for the same selection of paraemandices and the assumed
values for f;

« for Algorithms B.1 and D.1 for parameter ind¢xn, = 200.
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For g, = 0.5 andK = {10, 20, 40, 50, 100, 160, 175, 200, 250, 500}:

B.1 (CL-MP with SRS)

__ 1.0E+02

% —e—f1=0.1

b = f27=1.7
S £53=3.2

< 1.0E+01

z £79=4.8
E —%—105=6.3

é 0E+00 ¥ —e—131=7.9

1.0E+

< ——f157=9.4
(o

2 —=f183=11.0
|

£ ——£200=12.0
> 1.0E-01

1.0E+01 1.0E+02 1.0E+03
K (log-scale)

Figure 53. Normalized standard deviationo( fj)\/E/aW for (f1 fo7 fsz . foo) =

(0.1 1.7 3.2 48 6.3 7.9 9.4 11 12) witgaithm B.1 (LS-MP with SRS) for
ow = 0.5 andK = {10, 20, 40, 50, 100, 160, 175, 200, 250, 500}.

D.1 (PLS-S with SRS)

__ 1.0E+02

O o f1=0.1

®©

b —m—f27=1.7
g f53=3.2

< 1.0E+01 |

5 £79=4.8
E —%— 105=6.3

2 —e—f131=7.9

< 1.0E+00

T )\ —+—1f157=9.4
o

L —— £183=11.0
|

£ ——£200=12.0
> 1.0E-01

1.0E+01 1.0E+02 1.0E+03

K (log-scale)

Figure 54. Normalized standard deviationo( l:j)\/R/JW for (f1 fo7 fsz . fooo) =

(0.1 1.7 3.2 48 6.3 7.9 9.4 11 12) witgaaithm D.1 (PLS-S with SRS) for
6w = 0.5 andK = {10, 20, 40, 50, 100, 160, 175, 200, 250, 500}.
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B.1 (CL-MP with SRS) & D.1 (PLS-S with SRS)

1.0E+02

1.0E+01 N

—e—f200=12 for D1
—8—f200=12 for B1

1.0E+00

sgm_f*sqrt(K)/sgm_w (Log scale)

1.0E01 \
1.0E+01 1.0E+02 1.0E+03

K (log-scale)

Figure 55. Normalized standard deviation o( fj)\/R/aW for parameter fyo =

12.0 with algorithms B.1 and D.1 fore,, = 0.5 andK = {10, 20, 40, 50, 100, 160,
175, 200, 250, 500}.

These three figures (Figure b3gure 55) show that foK = 50, 100 and 160 the
values for the normalized standard deviata'm(n‘Aj)x/R/JW for algorithm D.1 deviates
from those for algorithm B.1 (e.g fd€ = 100, the normalized standard deviation
o( fj)x/R/aW for B.1is 1.9, whereas for D.1 this is 17.0). Tieviation between B.1
and D.1 occurs for some values for whi¢h < n,, though not for all as it does not
occur for the lowest valugs = 10 and 20, and for high valuks= 175 and larger.
For all valueK > 175, both algorithms B.1 and D.1 give the samea@rigal results
(i.e. numerical differences foK = 175 <n, are in the order of 10 or smaller;

numerical differences foK = 200, 250, 500 (i.e. values for whi&h> n,) are in the
order of 10'° or smaller).

22 March 2011 TREN/O7/FP6AE/S07.71574/037180 IFLY Page 97/144



iFly 6" Framework programme Deliverable D7.2f

The following figure presents:
« The meany(f;) as a function of the parameter ind¢x1,27,53,.. n, € 200

for each of the values d as specified in the above table, Ke= {10, 20, 40,

50, 100, 160, 175, 200, 250, 500} and the trueesfor
(f, f, fou -+ fu)=(01 1.7 3.2 48 63 7.9 94 11 L

B.1 (CL-MP with SRS)

—e—K=10
—a— K=20
K=40
—¢—K=50
—¥%— K=100
—e— K=160
K=175
—=—K=200
K=250
K=500
0 2 w @ @ w  w  w  w  w x| —g—Realf]
Parameter index j=1,...,np

mean(estimate f_j)

Figure 56. Mean /J(fj) values as a function ofj = 1,27,53,..n,(=200) with

algorithm B.1 (LS-MP with SRS) for 6, = 0.5 andK = {10, 20, 40, 50, 100, 160,
175, 200, 250, 500}. The red line indicated as ‘Rdg represents the true values
for f. .

J

D.1 (PLS-S with SRS)

14.0
—e—K=10
12.0 AL
—_ —m— K=20
= 10.0 | ’/;+
- K=40
g 80 .
£ —+—K=175
7 °F 200
|7} —= K=
z 4o - K=250
C =
g 20 - | K=500
E A —Oo— K=
0.0 — .
—=— Real fj
2.0 4 : : : !

0 50 100 150 200

Parameter index j=1,...,np

Figure 57. Mean /J(fj) values as a function ofj = 1,27,53,..n,(=200) with

algorithm D.1 (PLS-S with SRS) fore, = 0.5 andK = {10, 20, 40, 175, 200, 250,
500}. The red line indicated as ‘Real fj’ represerd the true values for f; .
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Figure 57 does not include the meau(fj) values forK = {50, 100, 160} with

algorihntm D.1 as their absolute values become mdlg large, i.e. they vary between
-6- 10" and +8 10" This also explains that fét = {50, 100, 160} the normalized

standard deviatiomw ( f J.)\/R / g,, with algorithm D.1 deviates from those of algomith
B.1.

Similar, though with other values for the horizdrdais, i.e. fork = {150, 160, 170,
180, 190, 200, 201, 220, 500, 1000}, i.e. includihg n, andK = n, + 1, and again
with o, = 0.5:

B.1 (CL-MP with SRS)

1.0E+02

g —e—f1=0.1

b —m—f27=1.7
(@]

o 53=3.2
< 1.0E+01

z £79=4.8
E —%—105=6.3
2 —e—{131=7.9
¥ 1.0E+00
T ——f157=9.4
o w
2 —=f183=11.0
|

£ —=—f200=12.0
> 1.0E-01

1.0E+02 1.0E+03

K (log-scale)

Figure 58. Normalized standard deviationo( fj)\/E/aW for (f1 fo7 fsz . foo) =

(0.1 1.7 3.2 4.8 6.3 7.9 9.4 11 12) witgaithm B.1 (LS-MP with SRS) for
6w = 0.5 andK = {150, 160, 170, 180, 190, 200, 201, 220, 500, 1000}.
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D.1 (PLS-S with SRS)

5 LOE+02
K ——1f1=0.1
o —m—f27=17
S 1oe+01 f53=3.2
2 f79=4.8
g —%—1105=6.3
5\ —e—f131=7.9
£ 10E+00 ——f157=9.4
? Ty —=—1183=11.0
£ ———1200=12.0
@

1.0E-01

1.0E+02 1.0E+03

K (log-scale)

Figure 59. Normalized standard deviationo( fj)\/E/JW for (f1 fo7 fsz . foo) =

(0.1 1.7 3.2 4.8 6.3 7.9 9.4 11 12) witgaithm D.1 (PLS-S with SRS) fore.,
= 0.5 andK = {150, 160, 170, 180, 190, 200nG}, 201, 220, 500, 1000}.

B.1 (CL-MP with SRS) & D.1 (PLS-S with SRS)

1.0E+02

1.0E+01 R

—0—f200=12 for D.1
—#—f200=12 for B.1

1.0E+00 -

sgm_f*sqrt(K)/sgm_w (Log scale)

1.0E-01
1.0E+02 1.0E+03

K (log-scale)

Figure 60. Normalized standard deviation o( fAj)\/E /o, for parameter fyo =

12.0 with algorithms B.1 and D.1 fore,, = 0.5 andK = {150, 160, 170, 180, 190,
200 (=np), 201, 220, 500, 1000}.
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B.1 (CL-MP with SRS)

+— K=150
25.0 —8— K=160
20.0 K=170
K=180

/A/
/ = —%—K=190

15.0

10.0

>0 M
0.0 M \/
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—e— K=200

—A— K=201

——K=220
K=500
K=1000

—— Real fj

mean (estimate f_j)

Parameter index j=1, ..., np

Figure 61. Mean u( fj) valuesas a function ofj = 1,2,...n, with algorithm B.1

(LS-MP with SRS) for 6, = 0.5 andK = {150, 160, 170, 180, 190, 200ng¥, 201,
220, 500, 1000}. The red line indicated as ‘Real fiepresents the true values for
f..

J

These figures (see Figure 59 and Figure 60) shoifdh& = 150 and 160 the values
for the normalized standard deviatiar( l?j)\/E/UW for algorithm D.1 deviates from
those for algorithm B.1. Related to this also theamgy( fj) values forK = 150 and

160 with algorintm D.1 are extremely large in abselsense (i.e. foK = 150 they
vary between between -80° and 5 10 , and forK = 160 they vary between
between -6 10 and 4 10').

For all valueK > 180, both algorithms B.1 and D.1 give the samea@rigal results
(i.e. numerical differences fdt = 201 are in the order of Z0or smaller, and for all
other valueK > 180, numerical differences are in the order 6t°idr smaller).

For K= n,+1 (=201), there is a peak in the normalized ddesh deviation

o(f, WK /g, both for algorithms B.1 and D.1; in addition there inaccuracies in

the corresponding meaga( fj) (see Figure 61). Therefore this case is furthelyaad

in Subsection 8.2.2 for different values of stadddeviationo,, .
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Discussion of results forn, =200 andg,, = 0.5
The simulations for algorithms B.1 (LS-MP with SR8)d D.1 (PLS-S with SRS)
with n, =200 and g,, = 0.5show that:
« ForK= 40,50, ..., 160, 170, the values for the ndized standard deviation
o( l:j)\/R/JW for algorithm D.1 deviates from those for algomitiB.1, and the

corresponding meagy( fj) algorithm D.1 becomes inaccurate compared to

algorithm B.1. FoK = 40 anK = 170, the deviations are still small, but nat fo
the other values in this interval. For exampleKor 100, with algorithm D.1 the
normalised standard deviations fall within the ®@i¢.8-17.0, which

corresponds to very high values of the standartaten o( fj) , I.e. in the order

of 10°, and with very inaccurate megr(f,) in the order of 18 whereas
with algorithm B.1 the normalised standard deviagi€all within the range 1.8-
1.9 and the standard deviatiorg fl.) fall within the range 3.0-3.8.

e ForK =10, 20 and for alk > 175, both algorithms give the same numerical
results. (i.e. numerical differences #r= 175are in the order of 10or smaller;
numerical differences fdK > n, = 200 are in the order of 1®or smaller). The

values ofo( l:j)\/R/JW do not really converge to some fixed number, bstdad
converge to a range and within this range theyveay, the range is 0.3-0.5.
* For 10< K < 200 (i.eK < np), the values ofa( l:j)\/R/JW with algorithm B.1

are within the range of 0.9 - 1.9.
« ForK =201 (i.,eK =ny+1), both algorithms B.1 and D.1 give the same

numerical results; though the values af fj)\/R/aW show a peak, with values
between 2.5 to 3.3, whereas For= 200 anK > 201 the values of
o( l:j)\/R/JW are smaller (than 1.9).
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8.2 Algorithm B.1 (LS-MP) vs. Algorithm D.1 (PLS-S) and variation of oy,

Results for algorithms B.1 (LS-MP with SRS) and QRALS-S with SRS) with
n, =200, for fixed value ofK and with variation of the standard deviatioyy, are

presented in the three subsections hereafter fee ttifferent values dk such that
K>n +1, K=n +1landK<n/.

This subsection is organised as follows:
* In Subsection 8.2.1, we vary standard deviatgnfor K = 250 (>n,+1)

* In Subsection 8.2.2, we vary standard deviatgnfor K = 201 (=ny+1)
* In Subsection 8.2.3, we vary standard deviatgnfor K = 195 (<ny)
For an overall discussion about the effects of ltbéhstandard deviatioa,, and the

number of samplelk on PLS-S algorithm D.1 the reader is referredubsgction 8.3.

8.2.1 Variation of oy and fixed valueK = 250 (>n,+1)

Consider algorithms B.1 and D.1, for a fixed vabfeK and with variation of the
standard deviatiow,,, as specified in the following table:

Algorithm Values for K | Values for 6
B.1 (LS-MP wirh SRS)| K = 250 o, ={0.001, 0.01, 0.1, 0.2, 0.4,0.8, 1,2,
D.1 (PLS-S with SRS) 5,10}

The following figures present:
+ The normalized standard deviationa@(f)), i.e. a(fj)\/ilaw, for fixed value of

K =250>n,+1 as specified in the above table for parametedicas
j =1,27,53,79,105,131,157,183,= ( 2Mas a function ofg, where both the

horizontal and vertical axes are presented in arltgnic scale, and with assumed
values for f,

(f, fy, feu -+ fu)=(01 1.7 32 48 63 7.9 94 11 };
* The corresponding standard deviatia(lfj) as a function ofg,, where both the

horizontal and vertical axes are presented in arltgnic scale.
e The corresponding meary(f,) as a function of the parameter number

j=1,27,53,79,105,131,157,183,= ( 2!

As it turned out that both algorithms B.1 and Ditegnumericaly the same results,
the results are only presented for algorithm B.1-KUIS with SRS).
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For K = 250 ando,, = { 0.001, 0.01, 0.1, 0.2, 0.4,0.8, 1, 2, 5, 10e}thalues of
o( fj)\/R/aW vary between 4.3-6.7

B.1 (CL-MP with SRS) and K =250

__ 1.0E+05

C —e—11=0.1

® 1 0E:04 —m—f27=1.7
21

3 £53=3.2
z LOE+03 79=4.8
E —x—105=6.3
£ 1.0E+02 - —e—f131=7.9
X

=g —+—f157=9.4
o

2 1.0E+01 4 _

£ = VR = S M N £183=11.0
| B e

£ 200=12.0
> 1.0E+00

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01

sigma_w (log-scale)

Figure 62. Normalized standard deviationo( fj)\/R/JW for (f1 fa7 fsz . fooo) =

(0.1 1.7 3.2 4.8 6.3 7.9 9.4 11 12) withagithm B.1 (LS-MP with SRS) for
K = 250 ande,, = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5}10

and corresponding standard deviathf ) is

B.1 (CL-MP with SRS) and K =250

1.0E+01 7 P

1.0E+00 —m 27217

W £53=3.2
HOE '/;,/o/"o/ f79=4.8
1.0E-02 =l '

-//0/ —%—105=6.3
10503 -7/ —e—1131=7.9
1.0E-04 —+—1f157=9.4
LOE05 | ——f183=11.0

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 f200=12.0
—o—sgm_w /sqrt(K)

std dev (est f_j) (Logscale)

sigma_w (Log scale)

Figure 63. Standard deviationo( fj)for (fy fo7 fs3 . fop0) =(0.1 1.7 3.2 4.8 6.3

7.9 9.4 11 12) with algorithm B.1 (LS-MP with SB) for K = 250 ande,, =
{0.001, 0.01, 0.1,0.2,0.4,0.8, 1, 2,5}10
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and corresponding meagm fj) is

B.1 (CL-MP with SRS) with K =250

14.000

—e— ow=0.001

122.000 —=— ow=0.01
10.000 - ow=0.1
8.000 ow =0.2

6.000 - —¥—ow=04

—e— ow=0.
4.000 + ow=0.8

mean (estimate f_j)

—+—ow=l

2.000 +

ow =2
0.000 &%

50 100 150 200 ow =5
Parameter indexj=1, ..., np —o— ow =10

o

Figure 64. Mean u( fj) valuesas a function ofj = 1,2,...n, with algorithm B.1

(LS-MP with SRS) for K = 250 ande,, = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5}10
The red line indicated as ‘Real fj’ represents therue values for f;.

22 March 2011 TREN/O7/FP6AE/S07.71574/037180 IFLY Page 105/144



iFly 6" Framework programme Deliverable D7.2f

8.2.2 Variation of o, and fixed valueK = 201 (=n,+1)

Consider algorithms B.1 and D.1, for a fixed vabfeK and with variation of the
standard deviatiow,,, as specified in the following table:

Algorithm Values for K | Values for e,
B.1 (LS-MP wirh SRS)| K = 201 g, ={0.001, 0.01, 0.1, 1, 2, 4, 8, 10,
D.1 (PLS-S with SRS) 100, 1000 }

The following figures present:
+ The normalized standard deviationaff;) , i.e. O'(fj)\/E/UW, for fixed value of

K=201=n,+1 as specified in the above table for parameiatices
] =1,27,53,79,105,131,157,183,= ( 2las a function ofo, where both the

horizontal and vertical axes are presented in arltignic scale, and with assumed
values for f,

(f, fn, fg - fu)=(0.1 1.7 32 48 63 7.9 94 11 };
* The corresponding standard deviatiaﬁfj) as a function ofg,, where both the

horizontal and vertical axes are presented in arltggnic scale.
e The corresponding meary(f,) as a function of the parameter number

j=1,27,53,79,105,131,157,183,= ( 2!

As it turned out that both algorithms B.1 and Ditegnumericaly the same results,
the results are only presented for algorithm B.1-KUIS with SRS).
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ForK = 201 ando,, = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 100th¢ values of
o( fj)\/R/aW can vary from low to very high (in the figure thésfrom 9.2- 10" to
1.1- 10%:

B.1 (CL-MP with SRS) and K = 201

1.0E+05

% —e—11=0.1

(&) —

2 1.0E+04 = 27=1.7
o 53=3.2

=

z LOE+03 f79=4.8
E —x— f105=6.3

é 1.0E+02 —e—f131=7.9

< —+—f157=9.4
(o

p 10801 ——183=11.0
|

£ 200=12.0
> 1.0E+00

1.0E-03 10E02 1.0E01 1.0E+00 1.0E+01 1.0E+02 1.0E+03

sigma_w (log-scale)

Figure 65. Normalized standard deviationo( fj)\/R/JW for (f1 fo7 fsz . fooo) =

(0.1 1.7 3.2 4.8 6.3 7.9 9.4 11 12) withagithm B.1 (LS-MP with SRS) for
K = 201 ande,, = {0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1(00

and corresponding standard deviathf ) is

B.1 (CL-MP with SRS) and K =201

1.0E+05

1.0E+04

——1{1=0.1
——1f27=1.7

f53=3.2

f79=4.8
—¥—{105=6.3
—0—f131=7.9
—+—1f157=9.4
—1{183=11.0

f200=12.0

1.0E-03

—O— sgm_w/sqrt(K)
1.0E-04
1.0E-05 +

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03

1.0E+03

1.0E+02

1.0E+01

1.0E+00

1.0E-01

1.0E-02

std dev (est f_j) (Logscale)

sigma_w (Log scale)

Figure 66. Standard deviationo( fj)for (fy fo7 fs3 . fop0) =(0.1 1.7 3.2 4.8 6.3

7.9 9.4 11 12) with algorithm B.1 (LS-MP with SR) for K = 201 ande,, =
{0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000
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8.2.3 Variation of o, and fixed valueK =195 (<ny)

Consider algorithms B.1 and D.1, for a fixed vabfeK and with variation of the
standard deviatiow,,, as specified in the following table:

Algorithm Values for K | Values for e,
B.1 (LS-MP wirh SRS)| K = 195 o, ={0.001, 0.01, 0.1, 0.2, 0.4,0.8, 1,|2,
D.1 (PLS-S with SRS) 5,10}

The following figures present:
+ The normalized standard deviationaff;) , i.e. O'(fj)\/E/UW, for fixed value of

K =195<n, as specified in the above table for parameter cexi
] =1,27,53,79,105,131,157,183,= ( 2las a function ofo, where both the

horizontal and vertical axes are presented in arltignic scale, and with assumed
values for f,

(f, fn, fg - fu)=(0.1 1.7 32 48 63 7.9 94 11 };
* The corresponding standard deviatiaﬁfj) as a function ofg,, where both the

horizontal and vertical axes are presented in arltggnic scale.
e The corresponding meary(f,) as a function of the parameter number

j=1,27,53,79,105,131,157,183,= ( 2!

As it turned out that both algorithms B.1 and Diteghumericaly the same results,
the results are only presented for algorithm B.1-KUIS with SRS).
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ForK =195 ando,, = { 0.001, 0.01, 0.1, 0.2,0.4,0.8, 1, 2,5, 10 }:

B.1 (CL-MP with SRS) with K =195

__ 1.0E+05

% —e—f1=0.1

(&) —

£ 1.0E+04 1 —=—f27=1.7

é ” 53=3.2
z 1.0E+03 - f79=4.8
E —%—105=6.3

é 1.0E+02 —e—131=7.9

=g —+—1f157=9.4
(o

p 10801 —-183=11.0
|

€ £200=12.0
> 1.0E+00

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01

sigma_w (log-scale)

Figure 67. Normalized standard deviationo( fj)\/R/JW for (f1 fa7 fsz . fooo) =
(0.1 1.7 3.2 48 6.3 7.9 9.4 11 12) withamithm B.1 (LS-MP with SRS) for

K =195 ande,, = {0.001, 0.01, 0.1, 0.2,0.4, 0.8, 1, 2, 5}10
and corresponding standard deviat'm)hf ) is

B.1 (CL-MP with SRS)

1.0E+02

1.0E+01
—e—i1=0.1

- _ —B—127=1.7
< 1.0E
g - 153=3.2
o f79=4.8
= 1.0E-01
= —%—105=6.3
% —e—1131=79
9 10E-02
5 —+—1157=0.4
[
= 10E:03 —=—1183=11.0
’ / £200=12.0

1.0E-04 —<O— Series10

1.0E-05 + T T T

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01

sigma_w (Log scale)

Figure 68. Standard deviationo( fj)for (fy fo7 fs3 . fop0) =(0.1 1.7 3.2 4.8 6.3

7.9 9.4 11 12) with algorithm B.1 (LS-MP with SR) for K = 195 ande,, =
{0.001, 0.01, 0.1,0.2,0.4,0.8, 1, 2,5}10
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and corresponding meagm fj) is

B.1 (CL-MP with SRS) with K =195

4.0

——ow=0.001

—=—0ow=0.01
ow=0.1
ow=0.2

—¥%—ow=0.4

120 4

0.0

8.0 1

6.0 —o—ow=0.8

40 —+—ow=1

ow=2

2.0

ow=5

mean (estimate f_j)

0.0 ow=10

—o—Real f_j

-2.0 + T T T T T T
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Parameter index j=1, .., np

Figure 69. Mean ( fj)for (fy fo7 fsz . fa0)=(0.1 1.7 3.2 48 6.3 7.9 94 11

12) with algorithm B.1 (LS-MP with SRS) for K = 195 ande,, = {0.001, 0.01, 0.1,
0.2,04,0.8,1,2,5, 70

Discussion of results folK = 195

The results of the simulations wikh= 195 show that:
« Foro, <1, the obtained values for the standard deviatbres( ;) all fall

within the range 1.0-1.7 (see Figure 68), and titained values for
o( fj)\/R/JW increase with decreasing, (see Figure 67).

» It turns out that foro,, getting smallerg( fAj)\/E/O'W becomes extremely high.
This can be explained by a division by, for g, — 0 with K = 195 and finite
values foro( fl.) , Which implies thato( fj)\/R/JW - 0,

 Foro, = 10, the values foo( fj)\/E/aW do not really converge to some fixed

number, but instead converge to a range and witihérrange they can vary, the
range is 12.6-16.3 (see Figure 67).
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8.3 Discussion of results obtained for large np
The effect of standard deviatios, and number of samplgs on the normalized

standard deviationo'(lf)\/R/O'W where F' :(f1 f, - fnp) with large value
n, =200, has been analysed for LS-MP with SRS and PLS-$ 3RS.

The main findings are:
¢ For K<n, and algorithm LS-MP with SRS, it turned out tHa¢ smalleiK is,

the more inaccurate the obtained values for thennxe(a:j) for j=1,2,..n,
become when compared to the true values,of

« For a subset df values such thaK <n_, the results showed that algorithm LS-

MP with SRS gives better results than algorithm f.8vith SRS. This is
illustrated by Figure 55, where fér= 50, ..., 160 andh, =200 the normalised

standard deviations are larger for algorithm PL&#h SRS than for algorithm
LS-MP with SRS. For example fét = 100, with algorithm PLS-S with SRS the
normalised standard deviations fall within the m®@nd6.8-17.0, which
corresponds to very high values of the standardatien o( fl.) , I.e. in the order

of 10"*°, whereas with algorithm LS-MP with SRS the staddaeviations fall
within the range 1.8-1.9 and the standard deviatgm;) fall within the range

3.0-3.8.

In addition the obtained values for the mqa(rfj) for j=1,2,.. n, for this set
of K values (i.e. foK = 50, ..., 160 and, =200) with algorihm PLS-S with
SRS is very inaccurate when compared to the trhesaf f, .

This shows that for such a subsetkovalues such thakK <n_ with large n,
algorithm PLS-S with SRS is not suitable.

* For K=175, both algorithm LS-MP with SRS and PLS-S with SBiSe
numericaly the same results.

The next main findings apply to both algorithm LS-MRh SRS and algorithm PLS-

S with SRS:
« For K large enough and such th& >n_ +1, the Monte Carlo simulations

showed that the standard deviaticm(sfj) for all j=1,2,... n, are proportional
to standard deviatiow,, and inversely proportional to the square rooKofThe
values ofo( l?j)\/E/UW for K large enough all fall within some ‘converging drea

(i.e. forK = 250, the range is 4.3-6.7, see Figure 62), thauithin this area there

IS no convergence; the ‘converging area’ is indepen of the value of standard
deviation g,,. Only in caseo, has extremely high values (e.g,, = 100 and
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o, =1000), the meanu( fj) becomes inaccurate. (Far, = 10 some smaller

inaccucaries are shown in Figure 69).
« For K=n_ +1, the values fora(fj)\/R/JW can become rather high (i.e. more

than 10) and this is independent of the valuemf (see Figure 65).
« Considering values of,, for K =195<n,, it turns out that there is a difference
between small values af,, (say smaller than 1) or larger values of valuegpf

(say larger than 2):
For small values ot i.e. foro,, < 1:

- the obtained values for the standard deviatia(1§j) for j=1,2,.. n, for the
case thalk = 195 n, all fall within a low range (e.g. between 1.0-1and

- the obtained values far( f j)\/R / g, increase with decreasing,. The
smallero,, becomes foK = 198n, it turns out that( l:j)\/R/JW becomes

extremely high.
For large values o&,,, i.e. foro, > 2:

- the obtained values for values fa( fAj)\/E/O'W do not really converge to

some fixed number, but instead converge to a randewithin this range they
can vary, for example fd€ = 195 the range is is 12.6-16.3 (fgy = 10).
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9 Concluding remarks

In this report sensitivity analysis has been cagr@d for IPS based collision risk
estimation in ATM. The sensitivity estimation probldms been formulated as a
multi-dimensional linear regression problem whidtireates the multi-dimensional
regression coefficients from IPS obtained input anput data sequences.

Several algorithms have been applied to the limeesion of the sensitivity estimation

problem. The algorithms are determined by the tyjpewti-dimensional regression

method and the type of sampling method.

» The following types of multi-dimensional regressionethods have been
considered: Classical Least Squares (CLS), Leasar8g with Moore-Penrose
(LS-MP), Partial Least Squares based on NIPALS (R)Snd Partial Least
Squares based on SIMPLS (PLS-S).

« Two sampling methods have been applied to draw ssEmfilr the input
sequence, i.e. Standard Random Sampling (SRS) ativd Hypercube Sampling
(LHS).

* The output of the model is generated by assumirgndom variable noise with
Gaussian distribution.

It has been investigated which of the algorithms bast be applied to the multi-
dimensional linear regression problem consideradcfalision risk estimation in
ATM.

Based on simulations with a small number of regoessomponents, i.e. with, =8,

it turned out that regarding sampling types SRS1af8 the results show that for all
values ofK, no systematic differences can be observed betwesertts obtained with
SRS and LHS. Figure 7for example shows the normalized standard devidton
one of the regression parameters for algorithm LUSiith both sampling types SRS
and LHS.
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LS-MP with SRS (black) & LS-MP with LHS (red): f1=0.1, sigma_w =0.01

o  1.0E+04
o
= i

E| & {

> 5 1.0EH02 —e—1=0.1 SRS
=
< 3 1.0E+01 —A&—f1=0.1 LHS
= -— —a———2
£ 1.0E+00

|

£

> 10E01 : :

1.0E+00 1.0E+01 1.0E+02 1.0E+03

K (Log scale)

Figure 70. Normalized standard deviation a(fj)\/E/JW for j = 1, i.e. for

parameter f,= 0.1, with algorithm LS-MP with SRS and algorithm LSMP with

LHS for 6, = 0.01 as a function oK = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000} fer n
= 8 (See also Figure 16).

It also has become clear that algorithms with Ckfraation can only be applied if
the number of samplé$ is larger than the number of regression companeptand

for this case the simulations show that algorithmth LS-MP, PLS-N and PLS-S all

give numerically the same results as CLS does.réigl for example shows that LS-
MP and PLS-N withn, =8give the same results fa¢ 29(=n_ +1).

LS-MP with SRS (black) & PLS-Nwith SRS (red): f5=1.6, sigma_w=0.5

>  L1OE+04
o
S
= 1.0E+03
E|
> 5 LOEH02 | —e—f5=1.6 LS-MP
=
£ & 1.0E+01 —tgztrlﬂ —&—f5=1.6 PLS-N
=3 .\Hn——ﬁ
£ 1.0E+00

|
£
> 10801 : :

1.0E+00 1.0E+01 1.0E+02 1.0E+03

K (Log scale)

Figure 71. Normalized standard deviation a(fj)\/E/JW for j = 5, i.e. for

parameter f,= 1.6, with algorithm LS-MP with SRS and algorithm PLS-N with

SRS forey =0.5 as a function oK = {3, 4, 6, 8, 9, 10, 11, 20, 35, 100} foy # 8
(See also Figure 28).
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In contrast to CLS, algorithms with LS-MP, PLS-NJdPLS-S can also be applied for
the case thakK <n, . This is for example shown in Figure 71 where LS-dfél PLS-

N with n =8 give different results forK <8(=n;). Both LS-MP and PLS-S
algorithms give the same numerical values for tkmmn/,l(fj) and normalized
standard deviatioro( fAj)\/E/O'W for K<n,. The PLS-N algorithm gives different
values for the mear)u(fj) and normalized standard deviatian( l:j)\/R/JW for
K <n, when compared to LS-MP and PLS-S. Though no systemliéferences can
be observed between the results of PLS-N when coedpga LS-MP and PLS-S.

As explained above, for a small value wf, it turned out that for all values ¢,

algorithms with LS-MP and PLS-S both give numehcdhe same results for the

mean and standard deviations of the regressioriceet. Figure 72shows that this
is not the case for a large valug of the number of regression components, for

example withn, =200 it turned out that for a subset Kf values inK <n_, the

results showed that the algorithm with LS-MP gibester results than the algorithm

with PLS-S. In the simulations it turned out that the subseK = 50, ..., 160 and
n, =200 the PLS-S with SRS algorithm resulted in very higfues of the standard

deviation o( fj), i.e. even in the order of 1, and in very inaccurate values for the
mean ,u(fj), whereas the LS-MP with SRS algorithm did not lesn such

inaccuracies. For all other valueskothan the above subset, both LS-MP and PLS-S
give numerically the same results for the mean atmhdard deviations of the
regression coefficient.
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LS-MP with SRS (red) & PLS-S with SRS (black)
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Figure 72. Normalized standard deviation o( fAj)\/E/O'W for parameter fyo =

12.0 with algorithm LS-MP with SRS and algorithm PLS-S with SRS fore,, = 0.5
and K = {10, 20, 40, 50, 100, 160, 175, 200, 250, 5@}, = 200 (See also Figure
55).

Based on the results obtained, the algorithm LS-MEh SRS is the preferred
algorithm. For this algorithm, the effect of tharstard deviatioro,, of the noise and

the number of sampld§ on the normalized standard deviation of the esionaf the

regression coefficient has been analysed (e.g.Fgpeae 73). In the Monte Carlo
simulations, the resulting values for the mean atahdard deviation of the, -

dimensional regression coefficient have been cemsl The mean values of the
estimations of the regression coefficient have lmsnpared to the assumed values of
the regression coefficient, and the standard dewiavalues of the regression

coefficient normalized by the standard deviatiorthed noise and the inverse of the
square root oK have been analysed.

Based on simulations with a small number of regoessomponents, i.e. with, =8,

it turned out that folK < n_, the smalleK is, the more inaccurate the obtained mean
values of then -dimensional regression coefficient become whenpaved to the
assumed values of the regression coefficient. @nother hand foK >n +2, the

obtained mean values of the regression coeffi@apptoach the assumed values very

accurately.
In addition, forK larger than and close o, the normalized standard deviations of

the regression coefficient can sometimes (thougtalways) become rather high, e.g.
more than 19as is for example shown in Figure 73 #r=9 (= n, +1).

22 March 2011 TREN/O7/FP6AE/S07.71574/037180 IFLY Page 116/144



iFly 6" Framework programme Deliverable D7.2f

For K = n, +1 this occurred more often than f&r = n, + 2, and in combination with
higher values ob,, this effect occurred more often.

PLS-S with SRS and sigma_w =0.01

o 1.0E+04 —o—m1=0.1
S ——m2=0.2
§| 1.0E+03 m3=0.4
E =
> = 1.0E+02 4 m4=0.8
= —X¥—m5=1.6
X o
£ @ 1.0E+01 - —&— m6=3.2
o - L)
2 = w ~— +—m7=6.4
E| 1.0E+00 m8=12.8
&

1.0E-01 \ \

1.0E+00 1.0E+01 1.0E+02 1.0E+03

K (Log scale)

Figure 73. Normalized standard deviation o( fj)\/E/aW for j = 1,2,...np with

algorithm LS-MP with SRS for 6, = 0.01 andK = {4, 6, 8, 9, 10, 25, 50, 100, 500,
1000} for n, = 8 (Similar to Figure 30 for algorithm PLS-S withSRS).

Also for a small number of regression components, with n, =8 andK large
enough such thaK >n_ +1 (seeFigure 73) the normalized standard deviadrise
regression coefficient do not really converge tonsofixed number, but instead

converge to a range (in the simulations, the sizéhis range is below 3) though

within this range they can vary. This range is iretefent of the value of the standard
deviation g,, of the noise, though it is dependent of the valuk, since the largeK

is, the smaller the values of this range are.
Only for extremely high values of the standard deen o, of the noise, the mean

values of the estimations of the regression caefficbecome very inaccurate when

compared to the assumed values of the regressefficent. Figure 74, for example
shows the inaccuracies far, =100, whereas foio,, =1000 they have not even been

shown in the figure, since they are very inaacueatd the figure would become
unreadable. Related to these high valuesdgr also the standard deviations of the

regression coefficient become very large.
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Figure 74. Mean u( fj) valuesas a function ofj = 1,2,...n, with algorithm LS-MP

with SRS for K = 32 ande, = {0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100} foy 1 8. The
red line indicated as ‘Real fj' represents the truevalues for f; } (Similar to

Figure 45 for algorithm PLS-S with SRS).

These results confirm that LS-MP with SRS is thdgred algorithm. But even LS-

MP with SRS cannot do the impossible as is showRkigure 74, when th&K is
smaller than or equal to the dimensiop of the regression coefficient or when the

standard deviationo,, of the noise becomes unreasonably high, the naedhl

estimation errors tend to increase. Therefore lidst to choose a valug that is
larger than though not too closertp, and moreover very high values for the standard

standard deviatiow,, of the noise should be avoided.
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Appendix A Partial Least Squares regression

The Partial Least Squares (PLS) regression methedpkined in this appendix. It
first starts with the Multi-dimensional Linear Regsion (MLR)problem, and then
describes the PLS regression.

A.1 Multi-dimensional Linear Regression (MLR)

In [Geladi & Kowalski, 1986] it is assumed that Weues of each variable are used
in the mean-centered form. The MLR problem in teahthe mean-centerex, and
mean-centerey, is described as follows [Geladi & Kowalski, 1986].

Consider

Yo = X, b+ e (A1)

or written in full:

Y10 0 0 b, g
0 X1 0 Xy

I IR e M e
: o : :
yr(: Xﬂ,l Xn,m bm q,]

which describes multi-linear dependenciesrfegamples, where
Yo: nx1,yo Is the column vector fan samples (also calleshe dependent
variable or one response variable
nxm, (Xo : independent variable)
mx1 (sensitivities; regression coefficients)
nx1 (error or residual)
is the number of samples
is the number of independent variables

32 @ T X

The least squares solution of (A.1) is

(X5 %,) b= %] ¥ (A.2)
or
b=(X] XO)_1 X ¥ if inverse(Xg XO)_1 exists
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The Multi-dimensional Linear Regression (MLRYrmula with more than one
dependent variable is described as follows [Ge8alowalski, 1986] in terms of the
mean-centered, and mean-centereq is as follows

Yo=XoB+ # (A.3)
or written in full:

y.1°’l Y?,p Xgl Xonn b} [g en e‘Q

2oy e e el B e e

where
Yo: nxp matrix Yy is referred to as the dependent variable, pwith 1, i.e.
at least two response variab)ess also referred to amatrix of
responsesr calledmatrix of dependent variablg&bdi, 2003]
nxm matrix Xo is referred to as independent variable; is alserredl to
asmatrix of predictorsor regressorgAbdi, 2003]
mxp (matrix of sensitivities for the MLR method)
nxp (matrix of error or residual)
is the number of samples
Is the number of independent variables
Is the number of dependent variables

&

T3 R

EstimatorB satisfies the following equation

(X5 X,) B=X] v, (A.4)
or
B=(X] XO)_l X5y if inverse(X] XO)_l exists
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Consider three cases:

1. n<m,i.e. more variablesr{ than samplesj
In this case rankX, X,) < n < m, hence matrixX, X, is not invertible.

Classical Least Squares cannot be applied foctss.

2. n=m, i.e. number of variablesnj and samplexj are equal
This case gives a unique solution Bprovided thalX, has full rank (in which
case matrixX; X, is invertible). Forn=m, the matrix inversion can cause

problems because the mati X, might be ill-conditioned.

3. n>m, i.e. more samples) than variablesnf)
Similarly as forn=m, this case gives a unique solution Boprovided thaiX
has full rank (in which case matriX] X, is invertible), though the matrix

inversion can cause problems because the maXjxX, might be ill-

conditioned.

Partial Least Squares methods can be applied tdldadulti-dimensional Linear
Regression problems where mati¥ X, is not invertible or is ill-conditioned.

A.2 Partial Least Squares Regression

Partial Least Squares methods, originally develapetthe 1960s and 1970s by the
econometrician Herman Wold (1966, 1973, 1975) tresk problems in econometric
path modelling, and are useful for models with maayiables but not necessarily
many samples or observations. The PLS method wasguently adopted by his son
Svante Wold and many others in the 1980s for regresproblems in chemometric
and spectrometric modeling. One of the first agiens of PLS to regression is
[Wold et al., 1984]. The stability of the predictaterived from PLS methods make
PLS regression methods perform better than oth#irkmewn regression techniques
[HOskuldsson, 1988]. PLS regression allows moreepethdent variablesy than the
number of samples and is able to deal with singularity, see [Rareteal, 1994] and
[Rosipal & Trejo, 2001]. In PLS, components are cieleé that give ‘maximal’
reduction in the covarianc€’Y of the data; in that sense PLS will give the minimu
number of variables that is necessary [H6skuldss8883].

PLS creates orthogonal score vectors (also ca#leshti vectors or components) by
maximizing the covariance between different setvafables [Rosipal & Kramer,
2006]. There are different PLS techniques to extietent vectors, and each of them
gives rise to a variant of the PLS.
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The predictor and predicted (response) variablesXiandY variables respectively)
are each considered as a block of variables. P&$ éltracts the score vectors which
serve as a new predictor representation and reggélse response variables on these
new predictors.

In general, PLS methods are fast, they are chaiaeteby high computational and
statistical efficiency [Boulesteix & Strimmer, 290 literature however, there exist
a large number of algorithmic variants of PLS, whimakes it very difficult to
understand the principles underlying PLS. Mosthef literature gives a description of
(iterative) algorithms for the Partial Least Sqamegression, such as in the tutorial of
[Geladi & Kowalski, 1986]. Some numerical propestief the PLS regression
algorithm are described in [HOskuldsson, 1988]. #ternative approach to PLS
regression is described in [De Jong, 1993], whgledlled the SIMPLS method (a
Straightforward IMPlementation of a statisticallyspired modification of the PLS
method) and calculates the PLS factors directlg lisear combination of the original
values.

An overview of recent advances is given in [RosifaKramer, 2006], there are
different forms of PLS, the most frequently useel RLS1 (i.e. the dependent variable
or response variablkgis a column vector) and PLS2 (i.e. the dependantble or
response variabl¥ is a matrix). It is shown in [De Jong, 1993] tI®IMPLS and
PLS1 give the same result, whereas for the case thiese are more than one
dependent variables the results are slightly dsfier

Hereafter a description of the algorithm is givevhich is based on [Geladi &
Kowalski, 1986], [HOskuldsson, 1988], [Ranner et 4P94], [Rosipal & Kramer,
2006] and [De Jong, 1993], although there are wiffees between these different
approaches. Differences are mainly in different svay scaling, i.e. normalization,
within the algorithm, which makes it difficult tardctly compare results within the
algorithm.

A.2.1. PLS centering and scaling

Assumption:
All variables, both dependent and independent, amsumed to be mean-
centered and are assumed to have some kind ohgcdRef: [Geladi &
Kowalski, 1986]).

Not all algorithms use scaling, in this appendix waeply scaling in the PLS
algorithm, i.e. we start with centering and scaloig andY, i.e. by subtracting off
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column means and dividing by standard deviatioeawh column, to get centered and
scaled variables(, andY,

X 0
Yo

(X=M,)AY
(Y=-M,)AV

(A.5)

where
M, is anxm matrix with column means as given below

A, is amxmdiagonal matrix with standard deviations of eaglumn
M, is anxp matrix with column mean as given below
A, is apxp diagonal matrix with standard deviations of easluimn

with the following notations:

X1 o Xy Yia o Yip
X=| o Y=| :
X1 0 Kam Yoa 0 Yoo
E Xn Vl yp
M, =| : o, M, = :
E Xn e Vl yp o

where the mearx; of thej-th column is defined ag, :EZXJ. , and similarly for
n= -
the meany, .

In this case the mean ¥§ = 0 and standard deviation X§ = 1, and similarly foiYo.

A.2.2 PLS decomposition

As described in [Geladi & Kowalski, 1986] and [Ruai & Kramer, 2006], PLS
decomposes thexm matrix of zero-mean variable§ and thenxp matrix of zero-
mean variable¥, into two outer relationsXy andY, blocks individually) and an
inner relation (linking both blocks, i.e. it is assed that there is a linear relation
between the score vectdrandu).

Then PLS is applied o¥pandYj,

First block of variables: X,=TP +E (A.6)
Second block of variables: Y,=U S + F (A.7)
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Inner relation: U=TD+H (A.8)

where T and U are nxa matrices of thea extracted score vectors (components,
latent® vectors), themxa matrix P and thepxa matrix S represent matrices of

loadings® and thenxm matrix E and thenxp matrix F are the matrices of residuals.

Matrix D is anaxa diagonal matrix anéi denotes thexa matrix of residuals.

The classical PLS method is based on the nonlirteaative partial least squares
(NIPALS) algorithm [Rosipal & Kramer, 2006], anchéis weight vectorsv andq
such that

[Cov(t )] =[ Cov(Xow. ¥ 9] = maf Cof X r.Y¥]

where
Cov(t,u)=t"u/n

denotes the sample covariance between the scai@standu , andn the number of
samples.

Substitution of (A.8) into (A.7) yields that
Y,=TC + F* (A.11)

whereC" denotes thaxp matrix of regression coefficients, afid thenxp residual
matrix, where

C'=D% (A.12)

and
F*=HS" +F (A.13)

Equation (A.11) is simply the decomposition ¥ using ordinary least squares
regression with orthogonal predictdrs

Least squares solutions
Note that the least squares solutions for (A.6) @ndl) are:

10 atent variables replace the original variables by a smaller nundféunderlying' variables.

1 Loading vectorsare the estimated weights which are to be apptigti¢ variables when fitting the
bilinear relationship between the Y and X variables (Ref:
http://www.bioss.ac.uk/smart/unix/mplsgxe/slidessgary.htm)
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(A.14)

A2.2.1 Iterative process

PLS is an iterative process which calculates ao$et orthogonalX block factors
scoresTl = [ty, b, ...,t3 ] companionY block factor scorebl = [uy, W, ...,Uy] factor

by factor. The first PLS factots andu; are weighted sums of the centered variables:
t1= Xo Wi and u;= Yo s respectively. Usually the weights are determinea tiie
NIPALS algorithm. This is an iterative sequencechistarts by choosing for, some
column ofYp, e.g., the one having maximum variance. The keFaequence then is:

w, O X, u,
th = xh—l Wh
SO
uh = Yh—l 51

(A.15)

and stops whew,, or t, do not change given some pre-specified tolerance.

The symboll] not only denotes proportionality, but also a subset| normalization

of the resultant vector. Thus the weight vectogsands, have length 1. (Different
normalizations are possible, the specific choicedeather a matter of habit or of
convenience). See pages 252-254 in [De Jong, 1893} more detailed description,
see Appendix B.

Once theX block factort;, is obtained one proceeds with deflating the dattices.
This yields new data se¥, andY, which are the matrices of residuals obtained after

regressing all variables dp

X = Xya ™ th(tE xh—l)/( t, th)

(A.16)
Yo=Y tﬁ(ﬁ] Yh—l)/( {1 th)
These equations can be written as
Xy = X~ L p;
(A.17)

Yh=Yh—l_b1t1$r\E ¥r1_ﬁﬁ
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wherepy, represents the vector of loading of fadipon theX variables, scaldp;, is
the estimated regression coefficient for the stedainner relation between the two
data sets relayed via their latent variables

Py = Xt th/(t; th)
U, =h,t, (A.18)
b, =u /()

After extraction of the components, matricds U, S P andW are created consisting
of the columns created by the vectors extractethduhe individual iterations, i.e.

T=[tt ],

U=[u,u,....,u] .

S=[s 5 8], (A.19)
P=[p. P-os B,

W=[w, w,..w]

and the (estimated) regression coefficignare saved in the diagonal matix

D =diagb)= diadh b, ... h]... (A.20)
Weight vectors g and c
Note that for example [Hoskuldsson, 1988] and [Riéiret al., 1994] use the weight

vector c,, while others use weight, instead (see for example [Geladi & Kowalski,
1986] and [De Jong, 1993)) in their algorithm, beéttors are related as

¢ =h s (A.21)

where the weight vectaris not scaled to unit norm; while as stated befoesweight
vectorsw, ands, have length 1.

After extraction of thea components, matric is created to consist of the columns
created by the vectors extracted during the indzddterations, i.e.

C=[c. 6 6], (A.22)

In matrix form this Equation (A.20) equals Equat{@nl2), i.e.
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C'=D% (A.12)

A PLS algorithm based on Nonlinear Iterative Partieast Squares (NIPALS) is
described in more detail in Appendix B.

A.2.2.2 Number of latent components

For the number of factois i.e. the number of latent components, used in Witls a
matrix X of size nxm the maximal value can be chosen, i.e.
A, < rank(X)< min(n,m), but in [Boulesteix & Strimmer, 2005] it is dedwed that
with PLS it is desirable to choose as small a valugeas possible without sacrificing
too much predictive power. One straightforwardistiaal procedure to estimate this
minimum valuea,,,, is the method of cross-validation, which is ddsedi on page 9

in (Boulesteix & Strimmer, 2005). For example afaddt value can be
a=min(n—1,m)(See also plsregress.m in Matlab).

A.2.2.3 Properties of matrices

(Orhtogonality) properties of the PLS factors (ecglumn vectors in the iterative
algorithm) are described in [Geladi & Kowalski, B)8[HOskuldsson, 1988] and
[Ranner et al., 1994].

The properties are summarized as follows:

* The vectorg; and s have unit length for eadh=1,2,..., a

* The vectorgs; andy; are centred around zero for eaich 1,2,..., a

* The vectorw; are mutually orthogonawiTvv,- =0 fori Zj
(in other wordd\' Wis a diagonal matrix)

« The vectorg; are mutually orthogonal;’ t; = O fori #]
(in other wordsT" T is a diagonal matrix)

» The vectorsy; are orthogonal to the vectagsfor i<j : wi' p = 0 fori <
(in other words the matri' P is a lower triangular matrix)

» The vectors;tare orthogonal to the vectausfor i<j : i u = 0 fori> |
(in other words the matriX' U is a lower triangular matrix)

« The vectorg; are orthogonal in the kernel space ofoX:(X" Xy p=0forizj
(whereA” denotes the generalized inverse of a matrix A)

* No special orthogonality properties are availalm®ag the vectors; , g andg;
Though these vectors satisfy some orthogonalitgitimms relative to some
matrices.
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A.2.2.4 Regression coefficient matrix for the cen&d and scaled variablesX,
and Y,

The score matriX can be computed from the originglas follows, see [De Jong,
1993] and [Helland, 1988]

T=X,R

whereP , R andW have the following relation

R=W(P W)_l (A.23)
PPR=R P=W W '

whereW is a weightmxa matrix, andR an alternative weighihxa matrix, both share
the same column space.

In [R&nner et al., 1994] it is shown that
W= X U (A.24)
Substituting (A.23) into Equation (A.11) gives

Y,=TC + F*
=X,RC + F*
=X,W(PW C+P
X, Bt P

where B, ¢ is the mxp regression coefficient matrix

~ -1
Bos=W(P W C
Then it follows that

Y,= X, B+ F* with estimator B, :W( =4 \/\/)_l Cc (A.25)

22 March 2011 TREN/O7/FP6AE/S07.71574/037180 IFLY Page 132/144



iFly 6" Framework programme Deliverable D7.2f

A.2.3 Back to original variables
In terms of the original (unscaled and uncentenealyicesX andyY it follows that

Y =B+ X B (A.26)

where é;LS is the regression matrix computed from the dath é}]}% is an intercept

term (i.e. the regression coefficient for the in&gt)

A g n
BPLS _/\x BPLS/\ Y

. 4 A (A.27)
BPLs, =M,-M A i( SIYARN
Proof: Substitute
Xo =(X=M, A}
Yo =(Y=-M,)AY
into (A.25) yields
(Y_MY)/\;(l :(X_M x)/\_; B st F*
that is
Y =M, +( X-M ><)/\_><1 ABPLS/\ yvE A
=M, + X/\_xl éPLSA v~M >[\_§< B STANRV AN
=X (/\;(1 BPLS/\Y)+M v~M X(A_;BPLé\ )+ F*A -
=X B;LS + EPL%
where é;LS is the regression matrix computed from the data
-, oA
BPLS = JX) BPLSU\
BI:’LS = /\_i BPLS/\ Y
and é;LSJ is an intercept term (i.e. the regression coefficfer the intercept)
B;Ls, =M,-M x(/\_; BN 9"’ F*A
=My =M By s+ F*Ay
|
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Appendix B PLS algorithms

As explained in Subsection 3.5, there are diffefeln$ algorithms as addressed for
example in [De Jong, 1993] and [Rosipal & Kramé&0&]. Appendix B.1 describes a
PLS algorithm based on NIPALS and Appendix B.2 dbss a PLS algorithm based
on SIMPLS.

B.1 PLS algorithm based on NIPALS

This appendix describes a PLS algorithm based amimar Iterative Partial Least
Squares (NIPALS), and is a more detailed descrniptimn the iterative process as
described in Appendix A.2.2.1.

It is assumed thaX, andY, are mean-centered and scaled, i.e. at least iladG&
Kowalski, 1986]. In [Hoskuldsson, 1988] the matsiomay be scaled or centered,
where scaling can correspond to working with caetreh matrices, and centering to
subtracting mean values from each of the columuesal

For each component h=1,2,..., a:
(1) Takeu; = somey;

Alternatives forugin literature:

* In[Geladi & Kowalski, 1986]u; = somey;

* In[H6skuldsson, 1988}y, = first column ofY.

* In [De Jong, 1993]y; = column ofY having maximum variance

In X-block:

() w, = X7, u /(4 u)
(as in [Geladi & Kowalski, 1986], [Hoskuldsson, BJ8[Rosipal & Kramer,
2006] and [Ranner et al, 1994])

(3) w, =w,/|w)| (normalization, i.e. scale vectoy, to be of length Jw,| - 1), i.e.

(4) t, = X, w,/( W, w,) (as in[Geladi & Kowalski, 1986]), or
t, = X, W, (as in [Hoskuldsson, 1988] and [Rosipal & Krani06])

In Y-block:
(6) s,= Y, /(1 t)
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(as in [Geladi & Kowalski, 1986], [Hoskuldsson, B)&nd [Rosipal & Kramer,
2006])

(6) s, =5/| 5| (normalization, i.e. scale vectsy to be of length 1ls | - 1)

(7) u, =Y, sﬁ/( S §) (as in[Geladi & Kowalski, 1986]; and in [Hoskuldsson, B)8
and [Ranner et al, 1994] but withinstead of), or

u, =Y., S (asin[Rosipal & Kramer, 2006] but with, instead of, )

(8) Compard in step 4 witht in preceeding iteration, if they are equal (withertain
rounding error), then go to step 9, else go to 8tdlf Y =y, then 5-8 can be
omitted, and set= 1)

After convergence, calculate X loadings and ressat&es and weight accordingly
©  p= Xt/

Ad step (9):
In addition in [HOskuldsson, 1988] and [Rosipal &akher, 2006] also th¥
loadings are calculated explicitly:

s =YL u/(d y)

ao) ()= o] ana o7 = 1] ()]
(normalization, i.e. scale vectqy, to be of length Jp, | - 1)

(as in in [Geladi & Kowalski, 1986])
(this step not in [Hoskuldsson, 1988], [Rosipal &kder, 2006] and [Ranner et
al, 1994))

(11) t,=t,

.
(02) H
(as inin [Geladi & Kowalski, 1986])

(this step not in [HOoskuldsson, 1988], [Rosipal &kder, 2006] and [Ranner et
al, 1994))

12) w=w

(7]
(as inin [Geladi & Kowalski, 1986])

(this step not in [Hoskuldsson, 1988], [Rosipal &kder, 2006] and [Ranner et
al, 1994))
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Steps (10)-(12):

These steps form a scaling procedure in [Geladi &dv#lski, 1986] for obtaining
“orthogonalt values”, but are “not absolutely necessary”’ (Sagepll in [Manne,
1987]).

These steps are not used in the PLS algorithmessibded in [Hoskuldsson, 1988],
[Rosipal & Kramer, 2006] and [Ranner et al, 1994].

(Estimated) regression coefficidntfor the inner relation between the two data sets i
(13) b=ut/(1" 1) ie. b, =u] /(¢ t,)

After extraction of thea components, matrice$, U, S P and W are created
consisting of the columns created by the vectorsaeted during the individual
iterations, i.e.

T=[tt ],
U=[u,u,....,u] .
S=[$ 5 8.,
P=[p. P-es B,
W=[w, w..w]

and the (estimated) regression coefficianére saved in the diagonal matix

D =diagb)= diadb b ... h],.

Calculation of residuals (general outer relationtfee X block and mixed relation for
Y block) for componenh, i.e., once theX block factorty is obtained one proceeds
with deflating the data matrices. This yields neatadsetsX, andY, which are the
matrices of residuals obtained after regressingaalbbles o,

Xy = xh—l_th(t-r: Xm)/(ﬂ th)
Yo=Y L(ﬂ Yh—l)/( i. th)

These equations can be written as

X = X~ t p;
Yh:Yh—l_qwi: Yo~ Q I %

with centered and scaled variabl¥s andY, for h = 1.
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Remarks:

The components andu in the PLS algorithm have the interpretation ttity are

components ilX andY space. The PLS algorithm selects one pair of corapis at a
time, because the covariance of the second paismaller than the maximal
covariance at the next iteration (Page 218 in [Hidson, 1988]).

There are many equivalent ways of scaling. Scérean be normalized in the
algorithm, but one can also choose to introducenabtization at another point in the
algorithm. This makes it difficult to directly corage the scores and the loadings of
different PLS regression implementations [Mevik &livens, 2007]

[Geladi & Kowalski, 1986] describes a few methodsdetermine the number of
components. If the underlying model for the relation betweérandY is a linear
model, the number of components needed to desttibenodel is equal to the model
dimensionality (i.e. rankX)).
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B.2 PLS algorithm based on SIMPLS

This appendix describes a PLS algorithm based BPES as described in [De Jong,
1993], where SIMPLS stands for ‘Straightforward lgifaentation of a statistically
inspired modification of the PLS method'.

Input to the SIMPLS algorithm is:
X is annxm matrix
Y is annxp matrix
a is the number of factors

The PLS algorithm first starts with centering Xfand Y, i.e. by subtracting off
column means to get centered variablgsandY, as in Equation (27).

Define the cross-produdd, = X; Y,.

For each component h=1,2,..., a:
(1) Apply Singular Value Decomposition (SVD) to mati_, , such that

A.=R QG

rn = weight vector is the first column B% , i.e. first left singular vector from the
SVD

Cch = first column ofCy, , i.e. first right singular vector from the SVD

a» = h™ element ofQ,

(2) Compute X-score vectdy,
t, =X, r, (see Equation (24)in [De Jong, 1993])
t, =t,/|t,| (normalization, i.e. scale vectgy to be of length 1ft, | - 1)

(3) Compute X-loading vectorp, :
P=X

(4) Compute weight vectod, :
S =6 G/[t], thatiss, =¥

(5) Compute Y-score vectay, :
u, =Y, s,thatisu, =Y, Y t (see Equation (26) in [De Jong, 1993])

(6) Compute weight vectow, :
w, =, /||t,|
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(7) Orthonormal basis vectof, obtained from modified Gram-Schmidt repeated

twice:

v, = p, (initialize orthogonal loading vector)

if h>1,then
Vv, =V, —Vh(VhT g) (makev O to previous loadings)

U, =u, — Th('l',f q1) (makeu [J to previoud values)

end

Vi, =V, /|| (normalize orthogonal loadings)
8) A=A~ vh( v, A,H) (see Equation (34) in [De Jong, 1993]), with= A,

After extraction of thea components, matriceR, T, P, S U andV are created
consisting of the columns created by the vectorsaeted during the individual
iterations, i.e.

R=[6, 000 .

T=[t,t,....t] .

P:[pl’ pz""’ pﬁ]mxa

S:[g, T §]pxa

U={u,t,,....u] .

V=[vigu

It is further shown that thenxp regression coefficient matriéPLS is (see Equation
(37) in [De Jong, 1993])

éPLS = R g

and the regression coefficient for the intercept is

A

B;Ls] =My=My Bpis
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Appendix C List of notations and symbols
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Number of factors used in PLS, i.e. number ofaoted score vectors (or
components or latent vectors) (PLS; Section 3.5)
Cross producty, = X, Y, of size n x1 (PLS; Section 3.5)

Deflated product matrices fdr=1,2,3,.. a (PLS; Section 3.5)
Moore-Penrose or pseudoinverdéof an mx n matrix A

Bias vectorb = cm(q, b,.., Qp)

Bias parameter foj =1,2,... n_ in bias vector

p

Change of factor in g, (Section 2)

Change of factor inn G(q,) (Section 2)
Covariance

Diagonal matrix of sizaxa (PLS; Section 3.5)
Change in collision risks (Section 2)

Change in the value of parametgr(Section 2)

Random error (Section 2)
Random error ok-th IPS run fork =1,..,K (Section 2)

Matrix of residuals of siz&xn, (PLS; Section 3.5)

Vector of residuals of siz& x1 (PLS; Section 3.5)
Euclidean norm (or 2-norm)

Intercept term

Estimate of the intercept term

Parameter in vectoF for j=1,2,... n,

Estimate of parametef; for j=1,2,..n,

Vector with model parameters or coefficients (atsaled regression
coefficients) of size n x1; FéCoI(fl,fz,...,fnp) that s

fl
fnp) or F=
f

n
p
np><1

Vector with intercept term and model parametersaefficients (also
called regression coefficients) of sige, +1)x1;

F2Col( o, fy....f, ) thatisFT=(1, 1,
Fr=[f, FT]

fnp) or
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F Least squares estimator of vectérof sizen, x1
Er=(f f, - 1)
|§ Least squares estimator of the extended regressictor F of size
(n, +1)x1; defined asF" :[fo IETJ:(fA0 fo-- fnp)
F Intercept vectorF, of size Kx1; defined asF, = Col( f,, f,....,f,) or
fO
F =
fO K x1
'prs PLS estimator of the vectdf of sizen, x1 (PLS; Section 3.5)
ﬁPL% PLS estimator of the intercept vectgy of size K x1(PLS; Section 3.5)
G(a) Collision risk as a function af (Section 2)
0G(q) Partial derivative n-dimensional vector (Section 2)
oq
G IPS computed output value of the collision riskdim 2)
ék Computed output value &fth IPS run fork =1,..,K (Section 2)
é(q) Estimation of collision risk (with a meta-model apach) (Section 2)
H Matrix of residuals of sizExa (PLS; Section 3.5)
H H" is the Hermitian transpose (also called conjuges@spose) of a
matrix H
| Identity matrix of sizeK x K
] Index numberj =1,2,... n,
Tk Vector of ones of siz& x1
NI Matrix of ones of sizeK XK, i.e. Iy« = Jial mxk
k Index numberk =1, 2.... ,K
K Base number of samples
K (D! Condition number of a square matAx, defined as<(A) =| A“[‘]JA*H for
a given matrix norm (e.gp-norm, Frobenius norm)
/ Uncertainty vector’ = Col(él,é2 e ,fnp)
l, Uncertainty parameter foy =1,2,... n  in uncertainty vector
M, M, is anK xn  matrix of column means of design mati
)_(l X’Ip
M, =|:
Xl P /Kxn,
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M, is anK x1 vector of column means of vect®¥r

y

M, =] :
7 Kx1

Mean

Mean value

Number of Monte Carlo simulations runs

Normal (or Gaussian) distribution with mean and variance.,?

Number of scalar parameters in vectp(Section 2)

Number of scalar parameters in vedtor

Loading vector of sizen, x1 for h=1,2,3,.. a, which is extracted from

a given matrixX (PLS; Section 3.5)
Loading matrix of sizen,xa , consists o& extracted loading vectors

P=[p. p..... B, ., (PLS; Section 3.5)

Proportionality and subsequent normalization ofrdsiltant vector
Parameteq, n-dimensional (Section 2)

Specific (local) working poing)* (Section 2)

Input-output samples &th IPS run fork =1,..,K (Section 2)

Input sample ok-th IPS rung, ~ p, () (Section 2)

Weight vector of sizen, x1 for h=1,2,3,.. a (PLS; Section 3.5)

Weight matrix of sizen xa (also referred to as alternative weight
matrix, as opposed to a weight matrix in the NIPAdl§orithm) consists
of a weight vectorsR =/, r2,...,ra]npxa (PLS; Section 3.5)

Loading scalar forh=1,2,3,.. @, which is extracted from a give
vectorY (PLS; Section 3.5)

Loading matrix of sizdxa , consists o extracted loading scalars
S=[s ... §l,, (PLS; Section 3.5)

Standard deviation

Normalized standard deviation cﬁ]‘ for | =0,1,2,.. n
Standard deviatiow_ of collision riskG (Section 2)

p

Standard deviation value
Covariance of parametey (Section 2)
Orthogonal vector of siz&k x1 for h=1,2,3,.. a, which is extracted

from a given matrixX (PLS; Section 3.5)
Score matrix of sizeK xa , consists ofa extracted score vectors
T=[t,t,,....t.],.. (PLS; Section 3.5)
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Vector of sizeK x1 for h=1,2,3,.. a, which is extradd from a giver
vectorY (PLS; Section 3.5)

Score matrix of sizeK xa, consists ofa extracted score vectors
U =[u,u,...,u]... (PLS; Section 3.5)

Vector of sizen, x1 for h=1,2,3,.. a (PLS; Section 3.5)
Matrix of size n,xa  which  consists of vectorsy,, i.e.
Y, :[vl,vz,...,\é]npxa ; [V V..., ] represents an orthonormal basis of
[P P,...., ] for X-loading vectorsp, (PLS; Section 3.5)
Variance
Random noise variable fdr=1,2.... ,K
Column vector of sizeKx1 ; W=2Col(w,w,..,w), that is
W,
Wh=(w w o W) orw=

Wi Kx1

Random variable of size, (in Section 2 of size) for k=1,2,.. ,K;

xkéCoI(><kyl,>q(,2,...,>q(yrb) that is x[:(xk’l Xep oo )M) or

X1

X =|
Xn

P/ npx1

Random variables of si @, +1) for k=1,2,.. ,K;

%, éCoI(l,&l,... ’wa) that is ﬁ:(l X1 oo )ﬁ«m) or X =[1 %]
Random variable in matriX for k=1,2,.. ,K and j=1,2,.. h,

K
Mean of thg-th column of matrixX, i.e. X, :%Z X i
k=1

Design matrixX of sizeKxn_;
X2Col(X,%.....%) thatisX" =(xX X - x)or
Xl,l Xln XI
X1 XK,np >§T<

K

an

Centered matrix of design matriX of zero-mean variables of size
Kxn, ,ie. X =X-M,

Kxnp
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Matrix of size Kxn  , e, XO:(IKXK—%JKXKJX or

X~ % X~ %
X, = :
X =% v X, — %

Design matrixX =[j.,, X] of sizeK ><(np +1), i.e.

XéCoI(S{,S(-Zr,...,XI) that is )ZT:()?I PUNINS ~T) or
1 )(1’1 Xinp )?I
X=[t : =
<
1 XK,]_ e )g(ynp Kx(np+]_) )ﬁ< K><(np+1)

Output values or known realisations foe1,2,... ,K
K

Mean of column vectoy , i.e. y :%Z Vi
k=1

Column vectolY of sizeK x1 ;

YZCol(y, Yoo, %), thatisY =(y, 'y -+ y)or
Y1

y=|
yK K x1

Centered column vector of vectér of zero-mean variables of sizex1,
e. Y.=Y-M,

Column vector of sizeKx1, i.e. Yoz(leK —%JKXKJY or
i~y

Yo=|
Ye =Y

, in Z:Col(z,z,...,z )

p

Chosen value fof =1,2,... n

Z:COI(Z,Z,... ,zp)
Sampling interval forj =1,2,... n,
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