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Executive summary 
 

Within HYBRIDGE novel Monte Carlo simulation speed up techniques have 

successfully been developed and applied for rare event estimation. In iFly WP7 

potential candidates are identified that are expected to provide significant room for the 

development of complementary speed-up techniques. Within iFly WP7 various 

options for improvement are identified and these are subsequently elaborated and 

tested within parallel studies. One of these studies is to combine sensitivity analysis 

with Monte Carlo simulation based rare event estimation, which is addressed in the 

current report, i.e. iFly deliverable D7.2f.  
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Abbreviations 
 

A3 Autonomous Aircraft Advanced  

ATM Air Traffic Management 

CLS Classical Least Squares estimation 

ESARR Eurocontrol Safety Regulatory Requirement 

HYBRIDGE Distributed Control and Stochastic Analysis of Hybrid Systems 

Supporting Safety Critical Real-Time Systems Design (EC 5th Framework 

Programme) 

ICAO International Civil Aviation Organisation 

IPS Interacting Particle System 

LHS Latin Hypercube Sampling 

LS-MP Least Squares estimation with Moore-Penrose 

MC Monte Carlo 

MLR Multi-dimensional Linear Regression 

NIPALS Nonlinear Iterative Partial Least Squares 

OAT One-At-a-Time 

PLS Partial Least Squares estimation 

PLS-N NIPALS based PLS 

PLS-S SIMPLS based PLS 

RTD Research, Technology and Development 

SA Situation Awareness 

SESAR Single European Sky ATM Research 

SIMPLS Straightforward IMPlementation of a statistically inspired modification of 

the PLS method 

SRS Standard Random Sampling 

SVD Singular Value Decomposition 

TOPAZ Traffic Organization and Perturbation AnalyZer 

WP Work Packages 
 
 



iFly 6th Framework programme Deliverable D7.2f 

 

22 March 2011 TREN/07/FP6AE/S07.71574/037180 IFLY Page 9/144 

 

1 Introduction 
 

This section introduces this report by giving its background as output of work 

package 7 of the iFly project, by describing its objective, and by outlining its contents. 

 

1.1 iFly project 

Air transport throughout the world, and particularly in Europe, is characterised by 

major capacity, efficiency and environmental challenges.  With the predicted growth 

in air traffic, these challenges must be overcome to improve the performance of the 

Air Traffic Management (ATM) system. The iFly project addresses these critical 

issues by developing a paradigm step change in advanced ATM concept development 

through a systematic exploitation of state-of-the-art mathematical techniques 

including stochastic modelling, analysis, optimisation and Monte Carlo simulation. 

 

The iFly project will develop a highly automated ATM design for en-route traffic, 

which takes advantage of autonomous aircraft operation capabilities and which is 

aimed to manage a three to six times increase over 2005 en-route traffic demand. 

 

iFly will perform two operational concept design cycles and an assessment cycle 

comprising human factors, safety, efficiency, capacity and economic analyses.  The 

general work structure is illustrated in Figure 1. During the first design cycle, state of 

the art Research, Technology and Development (RTD) aeronautics results will be 

used to define a “baseline” operational concept.  For the assessment cycle and second 

design cycle, innovative methods for the design of safety critical systems will be used 

to develop an operational concept capable of managing a three to six times increase in 

current air traffic levels. These innovative methods find their roots in robotics, 

financial mathematics and telecommunications. 

 

Design Cycle 1

Assessment

Design Cycle 2

Air and
Ground

Requirements

Advanced
Operational

Concept
 

Figure 1. iFly Work Structure. 
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As depicted in Figure 2, iFly work is organised through nine technical Work Packages 

(WPs), each of which belongs to one of the four types of developments mentioned 

above: 

 

Design cycle 1 

The aim is to develop an Autonomous Aircraft Advanced (A3) en-route operational 

concept which is initially based on the current “state-of-the-art” in aeronautics 

research. The A3 ConOps is developed within WP1. An important starting and 

reference point for this A3 ConOps development is formed by the human 

responsibility analysis in WP2. 

 

Innovative methods 

Develop innovative architecture free methods towards key issues that have to be 

addressed by an advanced operational concept: 

• Develop a method to model and predict complexity of air traffic (WP3).  

• Model and evaluate the problem of maintaining multi-agent Situation Awareness 

(SA) and avoiding cognitive dissonance (WP4).  

• Develop conflict resolution algorithms for which it is formally possible to 

guarantee their performance (WP5).  

 

Assessment cycle  

Assess the state-of-the-art in Autonomous Aircraft Advanced (A3) en-route operations 

concept design development with respect to human factors, safety and economy, and 

identify which limitations have to be mitigated in order to accommodate a three to six 

times increase in air traffic demand:  

• Assess the A3 operation on economy, with emphasis on the impact on 

organisational and institutional issues (WP6).  

• Assess the A3 operation on safety as a function of traffic density increase over 

current and mean density level (WP7). 

 

Design cycle 2 

The aim is to refine the A3 ConOps of design cycle 1 and to develop a vision how A3 

equipped aircraft can be integrated within SESAR concept thinking (WP8). WP9 

develops preliminary safety and performance requirements on the applicable 

functional elements of the A3 ConOps, focused on identifying the required 

technology. 
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A   operations 
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A 3   operations
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T0 + 44
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Start at
T0+21

T0 + 12

Start at
T0 + 21

A 3  operations
Air RequirementsT0 + 44

 WP1

         
 A3  ConOps

T0 + 44

 
 

Figure 2. Organisation of iFly research. 

 
 

1.2 Objective of iFly work package 7 

The aim of iFly WP7 is to assess the Autonomous Aircraft Advanced (A3) operations 

developed by WP1 (A3 Concept) and WP2 (Human responsibilities in autonomous 

aircraft operations), through hazard identification and Monte Carlo simulation on 

accident risk as a function of traffic demand, to assess what traffic demand can safely 

be accommodated by this advanced operational concept, and to assess the efficiency 

of the flights. The accident risk levels assessed should be in the form of an expected 

value, a 95% uncertainty area, and a decomposition of the risk level over the main 

risk contributing sources. In order to accomplish this assessment through Monte Carlo 

simulation, the complementary aim of this WP is to further develop the innovative 

HYBRIDGE speed up approaches in rare event Monte Carlo simulation. The work is 

organised in four sub-WPs: 

• WP7.1: Monte Carlo simulation model of A3 operation  

• WP7.2: Monte Carlo speed up methods  
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• WP7.3 Perform Monte Carlo simulations  

• WP7.4 Final report 

This report addresses a specific task within WP7.2, as is explained below. 

 

1.3 WP7.2: Monte Carlo speed up methods  

Within HYBRIDGE novel Monte Carlo simulation speed up techniques have 

successfully been developed and applied. As such, we start with a review of the 

Monte Carlo simulation based accident risk assessment situation, this is reported in 

[iFly D7.2a], entitled ‘Review of risk assessment status for air traffic’. 

Subsequently, potential candidates are identified that are expected to provide 

significant room for the development of complementary speed-up and bias and 

uncertainty assessment techniques. In order to spread the risk as much as is possible, 

within this task various options for improvement are identified and these are 

subsequently elaborated and tested within parallel tasks. In order to explore the 

various options, several studies will be conducted, i.e.: 

• Develop an effective combination of Interacting Particle System based rare event 

simulation with Markov Chain Monte Carlo speed up technique. This is reported  

in iFly Deliverable [iFly D7.2b], entitled ‘Trans-dimensional simulation for rare-

events estimation on stochastic hybrid systems’.  

• Develop a method to assess the sensitivity of multiple aircraft encounter 

geometries to collision risk, and develop importance sampling approaches which 

take advantage of these sensitivities. This will be reported in iFly deliverable 

D7.2c [iFly D7.2c], entitled ‘Interim Report on Importance sampling of multi 

aircraft encounter geometries’. 

• Develop novel ways how Interacting Particle System speed up techniques that 

apply to a pair of aircraft can effectively be extended to situations of multiple 

aircraft. This is reported in iFly deliverable [iFly D7.2d], entitled ‘Periodic 

Boundary Condition in Large Scale Random Air Traffic Scenarios’.  

• Develop an efficient extension of Interacting Particle System based rare event 

simulation for application to hybrid systems. This is reported in iFly deliverable 

[iFly D7.2e], entitled ‘Rare event estimation for a large scale stochastic hybrid 

system with air traffic application - Interacting particle system (IPS) extension to 

large hybrid systems’.  

• Combine Monte Carlo simulation based bias and uncertainty assessment with 

operation design parameter optimization. The key towards accomplishing this is to 

integrate sensitivity analysis with MC simulation based rare event estimation. This 

study is addressed in the current report, i.e. iFly deliverable D7.2f.  



iFly 6th Framework programme Deliverable D7.2f 

 

22 March 2011 TREN/07/FP6AE/S07.71574/037180 IFLY Page 13/144 

 

Finally, the results obtained from these studies will be as much as possible combined 

and integrated with the innovative speed up approaches developed within 

HYBRIDGE. This way we prepare an improved speed up approach for application to 

the A3 ConOps Monte Carlo simulation model of WP7.1. This will be reported in iFly 

deliverable D7.2g, entitled ‘Monte Carlo speed up studies’.  

 

1.4 Objective and organisation of the study in this report 

The objective of this report is to study Monte Carlo based assessment of the 

sensitivity of collision risk versus changes in parameter values. The motivation for 

studying assessment of these sensitivities stems from two complementary purposes. 

One purpose is that for a parameter value having uncertainty, one wants to know how 

this parameter uncertainty influences risk uncertainty. The other purpose is that in the 

design of a novel concept some parameters are under control of the design team. In 

such case parameter sensitivity knowledge shows the design team which requirements 

should be posed on these parameter values in order to reduce the risk in a predictable 

way.  

 

This report is organised as follows. Section 2 starts with the rationale and approach of 

this study. The multi-dimensional regression problem and methods studied in this 

report are presented in Section 3. Next, in Section 4 the set-up of the Monte Carlo 

simulations are presented and parameter choices in the example are given in Section 

5. The results of the Monte Carlo simulations are discussed in Sections 6, 7 and 8. 

Section 6 considers four different estimation types and two sampling types for a low 

number of regression coefficients. Section 7 considers the effect of the number of 

sampling types and standard deviation of the noise for a low number of regression 

coefficients. Section 8 considers the effect of a higher number of regression 

coefficients. Concluding remarks are given in Section 9. 
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2 Rationale and approach of this study 
 

2.1 Dual role of sensitivity analysis 

In a series of studies [Blom et al., 2007, 2009] the Interacting Particle System (IPS) 

approach has been developed for the speeding up Monte Carlo simulation based 

estimation of collision risk G of a stochastic hybrid system model of an advanced 
ATM operation. Because such a model has an n -dimensional parameter q , the 

collision risk G is a function of q, i.e. ( )G q . 

 
Potentially, each of the n  elements of q  may be one of the following two types: 

• a parameter under control of the design, 

• a variable having aleatory or epimistic uncertainty1. 

 
In both cases it is important to assess how G changes as a result of changes in q . If 

( )G q  is linear in q, then this is expressed by the partial derivative 
( )G q
q

∂
∂

, which is 

an n-dimensional vector. Hence, a change q∆  in the value of parameter q  yields a 

change of size G∆  in risk, i.e.  

 

( )
T

G q

G q

q

 ∂∆ = ∆ ∂ 
  

 
The q∆  may either be due to a controlled change in the design parameter 

components, or due to errors in the assumed values for the other variables. If the 
uncertainty in q  has a covariance qΣ , then ( )G q  is estimated with a standard 

deviation Gσ , satisfying: 

 

2 ( ) ( )
T

G q

G q G q

q q
σ    ∂ ∂= Σ   ∂ ∂   

  

 

                                                 
1 Uncertainty can be formally classified as aleatory uncertainty and epistemic uncertainty [Swiler & Giunta, 
2007]. Aleatory uncertainty (or stochastic uncertainty) characterizes the inherent randomness in the behavior of the 
system under study. Epistemic uncertainty (or state of knowledge uncertainty, or subjective uncertainty) 
characterizes the lack of knowledge about the appropriate value to use for a quantity that is assumed to have a 
fixed value in the context of a specific application. Thus stochastic uncertainty is a property of the system under 
study, while subjective uncertainty is a property of the analysts performing the study [Helton, 1993]. 
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A large 
( )

i

G q
q

∂
∂

 is helpful when iq  is a design parameter. However the opposite is 

true when iq  is a variable having uncertainty. Because of the dual role that may be 

played by the derivative 
( )

i

G q

q

∂
∂

 this report studies how to estimate this derivative by 

conducting multiple IPS runs.  

 

In handling this problem there are several issues that have to be taken into account: 
- In general, ( )G q  is not linear in q;  

- The number n of scalar parameters is large, e.g. 100n > . 
- One IPS run using parameter value q does not yield ( )G q  but yields it with a 

random error ε [Blom et al., 2007, 2009], i.e.  

 

(1 ) ( )G G qε= +ɶ   

 
- The standard deviation of random error ( )G qε  decreases only with the square 

root of the number of Monte Carlo simulation runs that are used for one IPS run 

[Blom et al., 2007]. 

 

2.2 Identification of suitable sensitivity analysis approach 

The issue of sensitivity analysis for large computer simulation models has been a rich 

area of research for several decades. Nice overviews of the resulting developments are 

provided by [Morgan & Henrion, 1990], [Cacuci, 2003], [Kurowicka & Cooke, 

2006], [Saltelli et al., 2008] and [DeRocquigny et al., 2008]. The general setting of the 
problems considered is that ( )G q  is nonlinear in q, the number n of scalar parameters 

is significant, e.g. 1n≫ , and a computation of ( )G q  for one value of q is 

demanding.  

 

Our application of the IPS approach towards the advanced ATM application [Blom et 

al., 2007, 2009] clearly is at the demanding side of the spectrum of sensitivity analysis 
problems. In particular since 100n >  and the random error ( )G qε  has a significant 

variance.  

 
The classical approach towards sensitivity analysis is to write ( )G q  as a Taylor series 

expansion, and then linearize around a specific (local) working point *q . For this 

classical linearization approach, well working sensitivity analysis approaches have 

been developed [Cacuci, 2003]. The key shortcoming of a local approach is that it 
works well in a linear neighbourhood of *q  only. However, if relevant q  values fall 

outside of this linear neighbourhood, then the approach falls short.  
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In order to capture the full spectrum of relevant q  values, sensitivity analysis has to 

be done in some global way. There are three main global sensitivity approaches 

[Saltelli et al, 2008]: 

- One-At-a-Time  

- Sobol Total Effects  

- Meta-modelling  

 

For each of these three main approaches, a short summary and its usability in 

combination with IPS are shortly discussed below.  

 

One of the simplest types of global methods is known as One-At-a-Time (OAT). The 

OAT approach comes down to calculating deltas in G as a result of deltas in one 

component of q. [Morris, 1991] developed an efficient randomized experimental plan 

for performing OAT which requires computation of G(q) for (n+1)K values of q. Here 

K is the number of grid points needed to cover the nonlinearity of G(q). A 

disadvantage of an OAT approach is its non-robustness towards random errors if a 
computation of ( )G q  for each value of q  is done through running Monte Carlo 

simulations. This makes OAT unsuitable to be used in combination with an IPS 

approach. 

 
Sobol Total Effects approach towards sensitivity analysis represents ( )G q  as a finite 

series of commonly named “Sobol terms” with increasing order of interaction 

between the components of q [Sobol, 1993]. Although the number of “Sobol terms” is 

finite, there are combinatorially many of them. However, for sensitivity analysis there 

is no need to assess each of these terms individually. What is needed only is the “total 

effect” for each of the components of q. Following this principle, [Saltelli, 2002] 

developed a systematic method to compute these Sobol “Total Effects” through 
computation of ( )G q  for ( 2)K n+  values of q . Here K  is a base number of 

samples, which may vary from a few hundred to a few thousand. Hence, Sobol “Total 

Effects” based global variance estimation is computationally very demanding, and 

therefore not a suitable candidate to be combined with IPS.  

 

In order to escape from the limitations of the above explained general methods, for 

specific domain applications often a kind of analytical meta-model ˆ ( )G q  is being 

developed for ( )G q . Once ˆ ( )G q  has been estimated, sensitivity computations can be 

done for ˆ ( )G q  rather than for ( )G q . The estimation of ̂ ( )G q  is done by finding the 

optimal fit from a family of analytically defined functions to input-output samples 

{ , ;  1,.., }k kq G k K=ɶ . Through a regression analysis the estimation of ˆ ( )G q  is robust 

against random errors in the output samples. A meta-model approach needs the base 

number of K samples only once. Obviously, the effectiveness of a meta-model 
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approach largely depends on a proper choice of the family of analytically defined 

functions.  

 

During earlier collision risk assessment for ATM in [Everdij & Blom, 2002], for 

sensitivity analysis the following exponential family of functions has shown to work 

well for fitting a meta-model ̂ ( )G q  of the form: 

 

0̂
ˆ ˆln ( ) lnTG q f F q= +  (1) 

 

with estimated intercept term 0̂f  and estimated parameter F̂ . In order to apply (1) it 

is required that each of the n components of q assumes strictly positive values only 

[Everdij & Blom, 2005; Everdij et al., 2006]. In previous TOPAZ studies this meta-

model has been used in combination with an OAT approach. In the current study, 

meta-modelling approach (1) has been identified as the logical candidate to be 

combined with multi-dimensional regression analysis. 

 

2.3 Logarithmic meta-model of sensitivity estimation approach 
Assume the k-th IPS run uses ~ (.)

kk qpq  as input sample and yields an IPS computed 

output value  

 

(1 ) ( )k k kG G qε= +ɶ   

 

Now taking logarithm yields: 

 

ln ln(1 ) ln ( )k k kG G qε= + +ɶ  (2) 

 

Through a multi dimensional regression analysis of K data pairs 

{ln , ln },  1,.., ,k kq k KG =ɶ  we get the following ̂ ( )kG q estimate 

 

0
ˆˆ ˆln ( ) lnT

k kG q f F q= +   

 

with 0f̂  and ˆ TF  such that Root Mean Square of ˆln ln ( )k kG qG − 
ɶ is minimal.  

 
The implication is that a change of a factor qχ  in ln kq  yields a factor Gχ  change in 

ˆln ( )kG q  with 

 
ˆ T

qG F χχ =   
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Similarly if the uncertainty in ln kq  has covariance {ln }kCov q   then  

 
ˆ ˆ{ln }ˆ{ln ( )} T

k kF Cov q FVar G q =   

 

2.4 Multi-dimensional linear regression problem 

For the derivation of a multi-dimensional regression analysis approach we consider 

the log-linear situation 

 

0ln ( ) lnT
k kG q f F q= +   

 

Substituting this in Equation (2) yields  

 

0ln ln(1 ) lnT
k k kf F qG ε= + + +ɶ  (3) 

 

Next, we define: 

 

ln

ln (1 )

ln

k k

k k

k k

y

w

x q

G

ε
=
= +
=

ɶ

  

 
Hence, kx  is an n-dimensional vector.  

With this, Equation (3) becomes: 

 

0
T

k k ky f F x w= + +  (4) 
 
From Equation (4) we get 

 

0

1T T
k k k k

k

y f F w F x w
x

 
 = + = +  

 
ɶ ɶ   

 
with  
 

[ ]
0

1T
k k

T T

x x

F f F

=

 =  

ɶ

ɶ
  

 
and noise process{ }kw , a sequence of independent and identically distributed (i.i.d.) 

random variables, with  { } 0kE w =  and 2{ }k wVar w σ= . 

 



iFly 6th Framework programme Deliverable D7.2f 

 

22 March 2011 TREN/07/FP6AE/S07.71574/037180 IFLY Page 19/144 

 

3 Multi-dimensional linear regression methods 
 

In this report the linear version of the sensitivity estimation problem is considered. 
Assume for every 1,2, ,k K= … , ky  is a function of an pn  dimensional vector kx , i.e. 

consisting of pn  components, say ,1 ,2 ,, , ,
pk k k nx x x…  and noise process { }kw   

 

0

1T T
k k k k

k

y f F w F x w
x

 
 = + = +  

 
ɶ ɶ  (5) 

 
with  
 

[ ]
0

1T
k k

T T

x x

F f F

=

 =  

ɶ

ɶ
  

 

with ( )1 2 p

T
nF f f f= ⋯  and intercept term 0f , and where  { }kw  is a sequence 

of independent and identically distributed (i.i.d.) random variables with { }kx and 

{ }kw  independent and { } 0kE w = .  

 
The values of 0f  and 1 2, , ,

pnf f f…  are unknown; these have to be estimated from 

{ }, ; 1,2, ,k ky x k K= ⋯  

 

Written in full, Equation (5) reads as follows:  

 

( ) ,1

0 1

,

1

p

p

k

k n k

k n

x
y f f f w

x

 
 
 = +
 
  
 

⋯
⋮

  for  1,2, ,k K= … . (6) 

 
The multi-dimensional linear regression problem is to estimate the pn -dimensional 

parameter F  and intercept term 0f  from the data sequences { }1 2, , , Ky y y⋯  and  

{ }1 2, , , Kx x x⋯ .  

 

The problem addressed in this section is how does a linear regression based 
estimation of  F  depend on the variables kx  and kw . 

 

For this multi-dimensional regression problem, three different types of estimation 

approaches are explained in the following subsections, i.e. Classical Least Squares 

(CLS) estimation in Subsections 3.1-3.3, Least Squares estimation with Moore 
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Penrose (LS-MP) in Subsection 3.4, and Partial Least Squares (PLS) estimation in 

Subsection 3.5.  

 

3.1 Classical Least Squares (CLS) estimation without intercept term 
Consider Equation (5) with zero intercept term 0 0f =  , i.e. consider 

 
T

k k ky F x w= +   for  1,2, ,k K= … . (7) 

 

with ( )1 2 p

T
nF f f f= ⋯ . The values of 1 2, , ,

pnf f f…  are unknown, and have to 

be estimated from { }, ; 1,2, ,k ky x k K= ⋯ . Written in full, Equation (7) reads as 

follows:  

 

( )
,1

,2

1 2

,

p

p

k

k

k n k

k n

x

x
y f f f w

x

 
 
 = + 
 
 
 

⋯
⋮

  for  1,2, ,k K= … . (8) 

 

Assume F̂  is the Classical Least Squares (CLS) estimator of the pn -dimensional 

parameter F  of Equation (7). Estimator ̂F  is the value of F  which minimizes the 

sum of squares of the deviations2 

 
2

1

ˆ min
S

T
k k

F
k

F y F x
=

= −∑  (9) 

 
with known samples kx  and known realisations ky . That is 

 

( ) ( )ˆ min
T

F
F Y X F Y X F= − −   

 
where the following definitions are used for Y  of size 1K ×  and X  of size pK n×  

 
( )
( )

1 2

1 2

Col , , ,

Col , , ,

K

T T T
K

Y y y y

X x x x

≜ …

≜ …
 (10) 

 

and thus matrix X (this matrix is called the design matrix, see [Campbell and Meyer, 

1979]) is given by 

                                                 
2 The notation || . || represents the Euclidean norm (or 2-norm).  
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1,1 1,

,1 ,

p

p

n

K K n

x x

X

x x

 
 

=  
  
 

⋯

⋮ ⋮

⋯

 (11) 

 
Similarly with these definitions and with ( )1 2Col , , , KW w w w≜ … , Equations (7) and 

(8) for 1,2, ,k K= …  can be written as 

 

Y X F W= +  (12) 

 

or written in full:  

 

11 1
1,1 1,

22 2

,1 ,

p

p

p

n

K K n
nK K

fy wx x
fy w

x x
fy w

              = +                 

⋯

⋮ ⋮
⋮⋮ ⋮

⋯

 

 

Multiplying left and right hand terms in (12) by TX  and subsequently taking X,Y-

conditional expectation yields a characterisation for { }ˆ | ,F E F X Y≜ . Because 

{ }| , 0TE X W X Y = , the least squares solution of estimator F̂  for the case that there 

is no intercept term satisfies the following equation 

 

( ) ˆT TX X F X Y=  (13) 

 

Solving Equation (13) yields the least squares estimatorF̂  for the case that there is no 

intercept term, which consists of pn  scalar values, say ( )1 2Col , , ,
pnF f f f≜ … , hence 

F  is of size 1pn × .  

 

If full rank condition is satisfied 
Because matrix X has size pK n×  , matrix TX X  is a square matrix of size p pn n×  

and ( ) ( )rank min ,T
pX X K n≤ . The latter follows from 

( ) ( ) ( ) ( )rank = rank = rank min ,T T
pX X X X X K n≤ . So this means that the rank of 

the square matrix TX X is always smaller than or equal to the number of parameters 

np.  
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If the inverse of the p pn n×  matrix TX X  exists, then the Classical Least Squares 

(CLS) estimatorF̂ follows directly from 

 

( ) 1ˆ T TF X X X Y
−

= ,  

 

which can for example be determined with Gaussian elimination.  

 
The inverse of the p pn n× matrix TX X  exists if and only if matrix TX X  has full 

rank, i.e. if ( )rank T
pX X n= . Since the size of matrix X  is pK n× , this case can only 

happen for pK n≥ , not for pK n< . 

 

 

Ill-conditioning 
The condition number of a square matrix A is defined as 1( )A A Aκ −= ⋅  for a given 

matrix norm (e.g. p-norm, Frobenius norm) with the convention that  ( )Aκ = ∞  for 

singular A, and the condition number is always greater than or equal to 1. The 

condition number depends on the underlying norm. It is a measure of stability or 

sensitivity of a matrix to numerical operations. Consider for example a linear 

systemAx b= , the condition number of A is a measure of the sensitivity of the 

solution to perturbations of A or b. If the condition number is close to 1, then small 

relative perturbations in b will lead to similarly small relative perturbations in the 

solution x, in which case A is said to be well-conditioned. If the condition number of A 

is large, then small relative perturbations in b will lead to large relative perturbations 

in the solution x, in which case A is said to be ill-conditioned [Golub and van Loan, 

1996]. 

 

This means that if matrix TX X  is ill-conditioned, then the matrix inversion of TX X  

can cause numerical problems.  

 

Rank deficient case 

If the inverse of the p pn n×  matrix TX X  does not exist, then the least squares 

problem for the no intercept case as considered in this subsection has an infinite 

number of solutions. Alternative ways to determine a least squares solution for rank 

deficient cases are considered in Subsections 3.4 and 3.5.  
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3.2 Estimation error of unknown parameter vector F 

 

Lemma 1. If the data satisfies T
k k ky F x w= +  with { }kx and { }kw independent and 

{ } 0kE w =  and standard deviation 0wσ >  for 1,2, ,k K= … , and matrix TX X  has 

full rank with ( )1 2Col , , ,T T T
KX x x x≜ … , then F̂  is an unbiased estimator, i.e. 

{ }ˆE F F= . It also follows that ( ) ( ) 12ˆ T
wVar F X Xσ

−
= . 

 

Proof: According to (12): 

 
Y X F W= +   

 
where ( )1 2Col , , , KW w w w≜ … . Because TX X  has full rank it is invertible, and (13) 

yields 

 

( )
( ) ( )

( )

1

1

1

ˆ T T

T T

T T

F X X X Y

X X X X F W

F X X X W

−

−

−

=

= +

= +

 

 

Hence  

{ } ( ) { }1ˆ T TE F F X X X E W F
−

= + =   

and  

( ) ( )( )
( ) ( )( )
( ) ( )

( ) { } ( )

1 1

1 1

1 1

ˆ ˆ ˆ T

T
T T T T

T T T T

T T T T

Var F E F F F F

E X X X W X X X W

E X X X W W X X X

X X X E W W X X X

− −

− −

− −

 = − −
  

 =  
 

 =   

=

 

 

The standard deviation 0wσ >  implies that { } 2T
wE W W Iσ= . Substitution yields 

 

( ) ( ) ( )
( )

1 12

12

ˆ T T T
w

T
w

Var F X X X I X X X

X X

σ

σ

− −

−

=

=
 

■ 
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In practice 2
wσ  is often not known. Because CLS algorithm does not use 2

wσ , then 2
wσ  

can be estimated from Y, X  as follows.   

 
ˆ ˆY X F W= +   and thus  ̂ ˆW Y X F= −  

 

Hence 

 

{ }2
ˆ ˆ 1 ˆ ˆ| ,

1 1

T T

w

W W
E Y X Y X F Y X F

K K
σ    = = − −   − −

. 
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3.3 Classical Least Squares (CLS) estimation with intercept term 
Consider Equation (5) with intercept term 0f , i.e. 

 

0

1T T
k k k k

k

y f F w F x w
x

 
 = + = +  

 
ɶ ɶ   for  1,2, ,k K= … . (14) 

 

with  

 

[ ]
0

1T
k k

T T

x x

F f F

=

 =  

ɶ

ɶ
     that is    

( )
( )

,1 ,

0 1

1
p

p

T
k k k n

T
n

x x x

F f f f

=

=

ɶ ⋯

ɶ ⋯
  

 
The values of 0f  and 1 2, , ,

pnf f f…  are unknown; these have to be estimated from 

{ }, ; 1,2, ,k ky x k K= ⋯ . 

 

Written in full, Equation (14) reads as follows:  

 

( ) ,1

0 1

,

1

p

p

k

k n k

k n

x
y f f f w

x

 
 
 = +
 
  
 

⋯
⋮

  for  1,2, ,k K= … . (15) 

 

Assume F̂ɶ  is the Classical Least Squares (CLS) estimator of the ( )1pn + -

dimensional parameter Fɶ  of Equation (14). Estimator ̂Fɶ  is the value which 

minimizes the sum of squares of the deviations 

 
2

1

ˆ ˆmin
K

T
k k

F
k

F y x F
=

= −∑ɶ

ɶ ɶɶ   

 
with known samples kxɶ  and known realisations ky . That is  

 

( ) ( )ˆ min
T

F
F Y X F Y X F= − −

ɶ

ɶ ɶ ɶ ɶ ɶ   

 
where the following definitions are used for Y  of size 1K ×  and Xɶ  of size 

( )1pK n× +  
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( )
( )

1 2

1 2

Col , , ,

Col , , ,

K

T T T
K

Y y y y

X x x x

≜ …

ɶ ɶ ɶ ɶ≜ …
 (16) 

 
and thus matrix Xɶ (also called design matrix) is  

 

1,1 1,

,1 ,

1

1

p

p

n

K K n

x x

X

x x

 
 

=  
  
 

⋯

ɶ ⋮ ⋮ ⋮

⋯

 (17) 

 
Similarly with these definitions and with ( )1 2Col , , , KW w w w≜ … , Equations (14) and 

(15) for 1,2, ,k K= …  can be written as 

 

Y X F W= +ɶ ɶ  (18) 

 

or written in full:  

 

0
1,1 1,1 1

1

,1 ,

1

1

p

p

p

n

K K K n K
n

f
x xy w

f

y x x w
f

           = +                 

⋯

⋮ ⋮ ⋮ ⋮ ⋮
⋮

⋯

 

 

The least squares solution of estimator F̂ɶ  for the case that there is an intercept term 

satisfies the following equation 

 

( ) ˆT TX X F X Y=ɶ ɶ ɶ ɶ  (19) 

 

Solving Equation (19) yields the least squares estimator F̂ɶ  for the case that there is an 

intercept term, which consists of 1pn +  scalar values, say ( )0 1 2Col , , , ,
pnF f f f fɶ ≜ …  

of size ( )1 1pn + × .  

 

If the inverse of the ( ) ( )1 1p pn n+ × +  matrix TX Xɶ ɶ  exists, Equation (19) can in 

principle be solved by determined with Gaussian elimination. However using matrix 

Xɶ , more information would be used than the data provided, because of the first 
column 1K×j , a 1K × -dimensional vector of ones. Therefore consider application of 

Theorem 2.4.1 on page 36 in [Campbell and Meyer, 1979], from which the following 

Corollary can be derived. 
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Corollary 1. Let matrix [ ]1KX X×= jɶ  be a matrix of size ( )1pK n× + , where 

1

1

1

1
K

K

×

×

 
 =  
 
 

j ⋮  is a 1K ×  vector of ones.  

The vector ( )0 0 1
ˆ ˆ ˆ ˆ ˆˆ

p

T T
nF f F f f f = = 

ɶ ⋯  with ( )1 2
ˆ ˆ ˆˆ

p

T
nF f f f= ⋯ , is a 

least squares solution of X F Y=ɶ ɶ  if and only if  

 

( )0 1

1ˆ ˆ
Kf Y X F

K ×= −j  (20) 

 

and F̂  is a least squares solution of 

 

0 0X F Y=  (21) 

 

where 

 

0

0

1

1

K K K K

K K K K

X I J X
K

Y I J Y
K

× ×

× ×

 = − 
 

 = − 
 

 (22) 

 
and 1 1K K K KJ × × ×= j j  is a matrix of ones, and K KI ×  is an identity matrix of size K K× . 

■ 

 

Equation (20) written in full reads as follows  

 

( )

( )

( )

0 1

1,1 1,1 1

,1 ,

1

1

1ˆ ˆ

ˆ
1

1 1

ˆ

ˆ

ˆ

p

p p

p

p

K

n

K K K n n

n

n

f Y X F
K

x xy f

K
y x x f

f

y x x

f

×= −

          = −              

 
 
 = −
 
 
 

j

⋯

⋯ ⋮ ⋮ ⋮ ⋮

⋯

⋯ ⋮

 

(23) 

 
where the mean y and the mean jx of the j-th column are defined as 
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1

1 K

k
k

y y
K =

= ∑ ,   ,
1

1 K

j k j
k

x x
K =

= ∑ . 

 
Matrix 0X  and vector 0Y  in Equation (22) written in full read as follows: 

 

1,1 1 1,

0

,1 1 ,

p p

p p

n n

K K n n

x x x x

X

x x x x

 − −
 

=  
 − − 
 

⋯

⋮ ⋮

⋯

,  
1

0

K

y y

Y

y y

 −
 =  
 − 

⋮  (24) 

 

 

From Corollary 1 it follows that the least squares solution 

( )0 0 1
ˆ ˆ ˆ ˆ ˆˆ

p

T T
nF f F f f f = = 

ɶ ⋯  of Equation (19)  is equivalent to solving:  

(i) estimator of the intercept term 0f̂  which satisfies Equation (20), that is  

  ( )0 1

1ˆ ˆ
Kf Y X F

K ×= −j , and  

(ii) least squares solution of estimator F̂ , where ( )1 2
ˆ ˆ ˆˆ

p

T
nF f f f= ⋯  satisfies the 

following equation 

( )0 0 0 0
ˆT TX X F X Y=  (25) 

 

 
For the case with an intercept term 0f  as considered in Equation (14), the solvability 

of Equation (25) depends on whether or not the p pn n×  matrix 0 0
TX X  is invertible, 

but even if matrix 0 0
TX X  is invertible, it can be ill-conditioned, which implies that 

matrix inversion of 0 0
TX X  can cause numerical problems.  

 

If full rank condition is satisfied 
Because of the construction of matrix X0 in Equation (24) it follows that the maximum 

number of independent rows equals K − 1, since the rows of matrix X0  add up to zero. 
Therefore it follows that for square matrix 0 0

TX X  of size p pn n×  that 

( ) ( ) ( ) ( )0 0 0 0 0rank = rank = rank min 1,T T
pX X X X X K n≤ − . So the rank of the square 

matrix 0 0
TX X is always smaller than or equal to the number of parameters np. 

 
If the inverse of the p pn n×  matrix 0 0

TX X  exists, then the Classical Least Squares 

(CLS) estimator ̂F follows directly from 
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( ) 1

0 0 0 0
ˆ T TF X X X Y

−
= ,  

 

which can for example be determined with Gaussian elimination.  

 
The inverse of the p pn n×  matrix 0 0

TX X  exists if and only if matrix 0 0
TX X  has full 

rank, i.e. if ( )0 0rank T
pX X n= . This case can only happen for 1pK n≥ + , not for 

pK n≤ . 

 

 

Rank deficient case 

If the inverse of the p pn n×  matrix 0 0
TX X  does not exist, then the least squares 

problem for the intercept case considered in this subsection has an infinite number of 

solutions. An alternative way to determine a least squares solution to Equation (19) is 
to apply the Moore-Penrose or pseudo-inverse to TX X  or 0 0

TX X , this is considered 

in Subsection 3.4. Another alternative way is to apply Partial Least Squares (PLS) 

estimation, which is described in Subsection 3.5. 
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3.4 Least Squares estimation with Moore Penrose (LS-MP) 

 

It was shown in Subsection 3.3 that for data satisfying Equation (14) including an 

intercept term, the least squares solution of estimator F̂  satisfies Equation (25), that 

is  

( )0 0 0 0
ˆT TX X F X Y= .   

If the inverse of the p pn n×  matrix 0 0
TX X  does not exist, then the least squares 

problem with the intercept term has an infinite number of solutions.  

 

An alternative way to determine a least squares solution to Equation (25) is to apply 
the Moore-Penrose or pseudo-inverse to square matrix 0 0

TX X . Then the least squares 

estimator F̂ follows from  

( )0 0 0 0
ˆ T TF X X X Y

+
= .  

where ( )0 0
TX X

+
 represents the Moore-Penrose or pseudoinverse of matrix 0 0

TX X . 

 

A Moore-Penrose or pseudoinverse A+ of an m × n matrix A is a generalization of the 

inverse matrix, it is defined as the unique n × m matrix satisfying all of the following 

four Moore-Penrose conditions:  

AA A A+ = , A AA A+ + += , ( )*
AA AA+ += , ( )*

A A A A+ += ,  

where H* is the Hermitian transpose (also called conjugate transpose) of a matrix H. 

For matrices whose elements are real numbers instead of complex numbers, H* = HT. 

A Moore-Penrose or pseudoinverse of a matrix can be determined by using the 

Singular Value Decomposition3. If rank(A) = n, then ( ) 1T TA A A A
−+ = , while if m = n 

= rank(A) , then 1A A+ −= . This latter means that if a square matrix is invertible, the 

Moore-Penrose inverse and inverse coincide by definition (see for example [Golub 

and van Loan, 1996] or [Strang, 1980]). 

 
If square matrix 0 0

TX X  is invertible, then the Moore-Penrose inverse and inverse 

coincide by definition, which means that the solution of estimator F̂  obtained by 

CLS coincides with the solution of estimator F̂  obtained by least squares estimation 

with Moore-Penrose. The Moore-Penrose inverse can be applied to matrix 0 0
TX X  

(and similarly to matrix TX X  in case there is no intercept term), though for large 

matrices this is time-consuming [Courrieu, 2005]. 

                                                 
3 A Singular Value Decomposition (SVD) decomposes a matrix into the product of three matrices, such that A = USVT. If A is a 
real matrix, the U and V are orthogonal matrices. If A is a complex matrix, then U and V are unitary matrices. Matrix S is a 
diagonal matrix whose diagonal values are in descending order. The diagonal values in S are the nonnegative square roots of the 
eigenvalues of ATA and are defined as the singular values of A. The columns of U and V, which are called left and right singular 
vectors, are orthonormal eigenvectors of AAT and ATA, respectively, or, when A is complex, unitary eigenvectors of AA* and A*A. 
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3.5 Partial Least Squares (PLS) estimation 

Another approach to deal with rank deficiency of matrices TX X  and 0 0
TX X  in the 

multi-dimensional linear regression problems is considered in this subsection. This is 

the Partial Least Squares (PLS) regression method, and is described in this subsection 

for the case with an intercept term.  

 

Consider the multi-linear regression problem with intercept term described in Section 

3.3 with Equation (18)  

 

Y X F W= +ɶ ɶ   

 

or written in full: 

 

0
1,1 1,1 1

1

,1 ,

1

1

p

p

p

n

K K K n K
n

f
x xy w

f

y x x w
f

           = +                 

⋯

⋮ ⋮ ⋮ ⋮ ⋮
⋮

⋯

 

 

This latter equation can also be written as 

 

0Y F X F W= + +   

 
where ( )0 0 0 0Col , , ,F f f f≜ …  is an 1K ×  vector , and thus  

 

101 1
1,1 1,

202 2

,1 ,
0

p

p

p

n

K K n
nK K

ffy wx x
ffy w

x x
ffy w

                 = + +                     

⋯

⋮ ⋮
⋮⋮⋮ ⋮

⋯

 

 

Here, we consider the rank deficient case, and show how to apply the Partial Least 

Squares (PLS) regression method. More details of PLS from literature are described 

in Appendix A. 
 

There are different PLS algorithms as addressed for example in [De Jong, 1993] and 

[Rosipal & Krämer, 2006]. The two most commonly used algorithms for PLS are 

NIPALS and SIMPLS as explained shortly below. These two algorithms have been 

considered for the Monte Carlo simulations in this report.  
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NIPALS based PLS (PLS-N) 
The PLS method in its classical form is based on the Nonlinear Iterative Partial Least 

Squares (NIPALS); it is an iterative process which involves the construction of 

“deflated data matrices”. The approach is described in more detail in Appendices A 

and B. Literature shows that different choices can be made in the PLS algorithm 

based on NIPALS, for example the original X and Y are assumed to be mean-centered 

and some algorithms, though not all, also assume some kind of scaling (e.g. by 

subtracting column means and dividing by standard deviation of each column). There 

is also some freedom in normalisation of column vectors that are calculated in the 

algorithm as is shown in Appendix B, since normalisation be done at different points 

in the algorithm. These kinds of differences between algorithms make it difficult to 

directly compare the scores and loadings of different PLS implementations [Mevik & 

Wehrens, 2007]. Appendix B describes a PLS algorithm based on NIPALS. 

 

SIMPLS based PLS (PLS-S) 
In [De Jong, 1993], an algorithm is proposed which calculates the PLS factors directly 

as linear combinations of the original (centered) matrices and is referred to as 

SIMPLS which stand for ‘Straightforward IMPlementation of a statistically inspired 

modification of the PLS method’. The SIMPLS approach avoids the construction of 

deflated matrices of the original X and Y matrices as is applied in the NIPALS based 

PLS algorithms. The SIMPLS approach directly finds weight vectors which are 

applied to the original matrix X, and without explicit computation of matrix inverses. 

As explained in [De Jong, 1993], this implies that SIMPLS is also faster than the PLS 

algorithms based on classical NIPALS (see also [Alin, 2009]).  

 

PLS steps based on SIMPLS 
PLS consists of the four steps as described hereafter, where the calculation of the PLS 

factors - in step 2 - is based on SIMPLS:  

 

Step 1: PLS centering  
Given matrix X of size pK n×  and column vector Y of size 1K ×  as in (21)-(22), i.e.  

 

1,1 1,

,1 ,

p

p
p

n

K K n
K n

x x

X

x x
×

 
 

=  
  
 

⋯

⋮ ⋮

⋯

   and   
1

1K K

y

Y

y
×

 
 =  
 
 

⋮  (26) 

 

The PLS algorithm first starts with centering of X and Y, i.e. by subtracting column 
means to get centered variables cX  and cY . In this way matrices  
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c X

c Y

X X M

Y Y M

= −
= −

 (27) 

 
where XM  is an pK n×  matrix of column means and YM  is an 1K ×  vector of 

column means, i.e. 

 

1

1

p

p
p

n

X

n
K n

x x

M

x x
×

 
 

=  
 
 

⋯

⋮ ⋮

⋯

,  

1

Y

K

y

M

y
×

 
 =  
 
 

⋮  (28) 

 
where the mean jx  of the elements in the j-th column of matrix X and the mean y of 

vector Y satisfy 

 

,
1

1 K

j k j
k

x x
K =

= ∑ ,  
1

1 K

k
k

y y
K =

= ∑ . 

 
With this centering, the (column) mean of cX  is a matrix of zeros and similarly the 

mean of cY  is a vector of zeros. Some PLS algorithms also apply scaling of matrix X 

and vector Y  in this first step as is described in Appendix A. 

 

Remark: 

This first PLS step has a relation with Corollary 1 in Subsection 3.3:  
• the centered matrix cX  and the centered vector cY  in Equation (27) are the same 

as matrix 0X  and vector 0Y  in Equations (22) and (24), and 

• the matrix of column means XM  and vector of column means YM  in Equation 

(28) are the same as 
1

K KJ X
K ×  and  

1
K KJ Y

K ×   in Equation (22). 

 

Using these two relations, we get: 

0

0

c X

c Y

X X X M

Y Y Y M

= = −

= = −
 (29a) 

with 
1

1

X K K

Y K K

M J X
K

M J Y
K

×

×

=

=
 (29b) 
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Step 2: PLS decomposition 
The PLS technique works by successively extracting factors from both X0  and Y0, 

such that the covariance between the extracted factors is maximized. As described in 

[Geladi & Kowalski, 1986] and [Rosipal & Krämer, 2006], PLS decomposes the 

pK n×  matrix4 of zero-mean variables X0  and the 1K ×  vector of zero-mean 

variables Y0  into two outer relations (within each block X0  and Y0  individually) and a 

linear inner relation is assumed between the column vectors of the score matrix T  and 

corresponding column vector in score matrix U. The PLS technique tries to find a 

linear decomposition of X0  and Y0 , such that 

 

First block of variables:  0
T

XX T P E= +   

Second block of variables:  0
T

YY U S E= +  (30) 
Inner relation:   U T D H= +   

 

where T  and  U are K×a matrices of the a extracted score vectors (components, 

latent5 vectors), the np×a matrix P and the 1×a matrix S represent matrices of 
loadings6 and the K×np matrix XE  and the K×1 matrix YE  are the matrices of 

residuals. Matrix D is an a×a diagonal matrix and H denotes the K×a matrix of 

residuals. 

 

The decomposition of  X0  and Y0 is finalized so as to maximize covariance between 

extracted score matrices T and U. There are multiple algorithms available to solve the 

PLS problem ([De Jong, 1993], [Rosipal & Krämer, 2006]), all algorithms follow an 

iterative process (i.e. column by column) to find score matrices T and U  and loading 

matrices S and P and diagonal matrix D. As already explained above, the two most 

commonly used algorithms for PLS are NIPALS and SIMPLS. The SIMPLS based 

PLS approach of [De Jong, 1993] is described below. A NIPALS based PLS approach 

is described in more detail in Appendices A and B. 

 

SIMPLS 
In the SIMPLS algorithm of [De Jong, 1993], successive orthogonal vectors 

1 2, , , at t t…  are extracted from a given matrix X, such as to maximize their covariance 

with corresponding vector 1 2, , , au u u… of a given matrix (or vector) Y.  These vectors 

                                                 
4 Dimensions of X and Y in Appendices A and B are denoted (generally) as n×m and n×p instead of 
K×np and K×1 respectively. 
5 Latent variables replace the original variables by a smaller number of 'underlying' variables. 
6 Loading vectors are the estimated weights which are to be applied to the variables when fitting the 
bilinear relationship between the Y and X variables. (Ref: 
http://www.bioss.ac.uk/smart/unix/mplsgxe/slides/glossary.htm) 
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ht  and hu  depend on weight vectors hr  and hs  for h=1,2,..., a , which can be applied 

directly to the centered matrices 0X  and 0Y :  

 

0

0

, 1,2, ,

, 1,2, ,
h h

h h

t X r h a

u Y s h a

= =
= =

…

…
 

 

such that  

• the covariance ( ),h hCov u t of score vectors ht  and hu  are maximised,  

• weight vectors hr  and hs  are normalised, i.e. 1T
h hr r =  and  1T

h hs s = , and  

• vectors ht   are orthogonal, i.e.  0T
j ht t =  for h j>  and , 1,2, ,h j a= … .  

 
This means that the aim is to determine weight vectors hr  and hs  for h = 1,2,..., a 

such that  

 ( ) ( )0 0 0
, 1, 1 1, 1

max , max , max
h h h h h h

T T
h h h h h h

u t s r s r
Cov u t Cov Y s X r s A r

= = = =
     = =       (31) 

 
where 0 0 0

TA X Y=  , under the constraint that  

 
 0T

j ht t =    where 0h ht X r=   for h j>  (32) 

 
Without this last constraint there is only one straightforward solution: vectors 1r  and 

1s  are the first left and right singular vectors of cross product matrix 0 0 0
TA X Y= . 

Orthogonality constraint (32) is imposed to generate more than one solution and to 

generate a set of orthogonal factors of X.  

 
The first weight vectors 1r  and 1s  are the first left and right singular vectors of 

0 0 0
TA X Y= , can be obtained from the Singular Value decomposition (SVD) of cross-

product 0 0 0
TA X Y= . This implies that 1r  is the dominant7 eigenvector of 0 0

TA A  and 1s  

is the dominant eigenvector of 0 0
TA A , which equals the maximum attainable 

covariance.  

 

As is explained in more detail in [De Jong, 1993], with the constraint in Equation 
(32), the next weight vectors hr  and hs  for 2,3, ,h a= …  are obtained as the dominant 

eigenvectors of T
h hA A  and T

h hA A  respectively, which can be obtained from the SVD 

of deflated product matrices hA   

 

                                                 
7 The dominant eigenvector of a matrix is an eigenvector corresponding to the eigenvalue of largest 
magnitude (for real numbers, largest absolute value) of that matrix. 
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( )1 1

1 0

   for    2,3, ,T
h h h h hA A v v A h a

A A

− −= − =

=

…
 

 
Here [ ]1 2, , , av v v…  represents an orthonormal basis of [ ]1 2, , , ap p p…  for X-loading 

vectors hp  expressing the relation between the original X variables and the kth PLS 

factor with 

 

( )0 /T T
h h h hp X t t t=   

 

and may be obtained from a Gram-Schmidt orthonormalization (see Equation (33) in 
[De Jong, 1993]) of orthonormal basis [ ]1 2, , , av v v…  

 

( )1 1

1 1

   for    2,3, ,T
h h h h hv p v v p h a

v p

− −∝ − =

∝

…
   

 

The symbol ∝  not only denotes proportionality, but also a subsequent normalization 

of the resultant vector.  

 

The main difference with the standard PLS (such as NIPALS) is that the deflation 
process applies to the cross-product 0 0 0

TA X Y=   and not to the larger data matrices 

0X  and 0Y  . Note that instead of centering both X and Y, one might center only Y, 

since 0 0 0 0
T TA X Y X Y= = . 

 

After extraction of the a components, matrices R, T, P, S, U and V are created 

consisting of the columns created by the vectors extracted during the individual 

iterations, i.e. 

 

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

1 2

1 2

1 2

1 2 1

1 2

1 2

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

p

p

p

a n a

a K a

a n a

a a

a K a

a n a

R r r r

T t t t

P p p p

S s s s

U u u u

V v v v

×

×

×

×

×

×

=

=

=

=

=

=

…

…

…

…

…

…

 (33) 

 

 

Step 3: PLS estimation in terms of centered variables 
The estimation of Y in terms of the centered variables 0X  and 0Y  is [De Jong, 1993]: 
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0 0
ˆ
PLSY X F=  (34) 

 

where estimator ̂PLSF  is the  np×1 regression coefficient matrix8   

 
ˆ T
PLSF R S=  (35) 

 

and where R  is a weight np ×a matrix (also referred to as alternative weight matrix, as 

opposed to a weight matrix W in the NIPALS algorithm) and S is a 1×a vector. 

 

 

Step 4: PLS estimation in terms of original variables 
In terms of the original variables X  and Y it follows from Equations (29) and (34) 

that 

 

0

ˆ ˆ
PLS PLSY F X F= +  (36) 

 

where ˆPLSF  is the np×1 regression matrix computed from Equation (35)  

and 
0

ˆ
PLSF  is an K×1 intercept term (i.e. the regression coefficient for the intercept) 

which follows from  

 

0

ˆ ˆ
PLS Y X PLSF F= Μ − Μ  (37) 

 

 

 

                                                 
8 In Appendices A and B for the regression matrix, another notation is used, i.e. ˆPLSB , and similarly 

for regression matrix and intercept terms used in Equation (36).  
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4 Set-up of Monte Carlo simulation 
 

This section describes the approach taken in conducting the Monte Carlo simulations 

for the linear version of the sensitivity estimation problem as was explained in Section 
3 and for small number of scalar parameters pn .  

 

4.1 Monte Carlo simulation approach 

 
In preparation of a Monte Carlo simulation of model (4), that is 0

T
k k ky f F x w= + + , 

one has to adopt values for the estimator F and intercept parameter 0f  and shapes for 

the probability density functions for random variables kw  and kx , and to generate 

output values for ky  according to Equation (4).  

Given K samples for kx  and K generated outputs for ky , in this section the (partial) 

least squares estimator F̂  will be determined using the various algorithms of Section 

3. Finally, the resulting estimators F̂  will be compared to the original adopted values 

for F. In this section we assume to run  N  Monte Carlo simulation runs for each of the 

methods in Section 3. 

 

The simulation approach can be summarized as follows:  

 

Step 1: Setup 
First start with the following choices: 
1.a. Choose the number of components pn , and choose values for the pn -dimensional 

vector ( )1 2 p

T
nF f f f= ⋯  and the intercept parameter 0f . 

1.b. Choose a probability density function for random variable kw  . 

1.c. Choose a probability density function for random variable kx . 

1.d. Choose a value for the number of samples K .  

 
Assumptions for the probability density functions of noise kw  and random variable 

kx  are discussed below in Subsection 4.2. 

 

Step 2: Type of least squares estimation and sampling method 
2.a. Choose the type of least squares estimation. Options are CLS, LS-MP, PLS-N, 

PLS-S as discussed in Subsections 3.1-3.5. 
2.b. Choose the sampling method to draw samples forkx . This is further discussed in 

Subsection 4.3. 
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Step 3: Evaluate least squares estimator using Monte Carlo simulation 
Monte Carlo simulation using the method chosen in Step 2 works as follows: 

First, determine the number N  of Monte Carlo simulations runs to evaluate the 

method chosen in Step 2.   

Next, for each of these N Monte Carlo runs the following steps apply. 
3.a. For 1,2, ,k K= … draw samples for kx  and compose matrix X from these 

samples. 
3.b. For 1,2, ,k K= … draw samples for kw  and compose vector W from these 

samples. 
3.c. For 1,2, ,k K= … generate output ky  using Equation (4) and compose vector Y 

from these outputs. 

3.d. Given matrix X and vector Y, determine the (partial) least squares estimator F̂  

using the method selected in Step 2, where ( ) ( )1 2
ˆ ˆ ˆˆ

p

T

nF f f f= ⋯ and 

determine the estimate of the intercept term 0f̂ . 

 

Step 4: Determine mean and standard deviation of least squares estimator over 
all MC simulation runs 

Determine the mean ( )0f̂µ , the mean ( ) ( )1 2
ˆ ˆ ˆˆ ( ) ( ) ( )

p

T
nF f f fµ µ µ µ= ⋯ ,  

the variance ( )0
ˆVar f  and the covariance ( )ˆCov F  over the output values from the  N  

Monte Carlo simulation runs. Finally compare the estimated means and variances 
with the true values of F  and 0f . 

 

4.2 Probability densities for wk and xk 

 

Probability density functions of wk 
Suppose that noise kw  for 1,2, ,k K= …  is an independent and identically distributed 

(i.i.d.) sequence of random variables. It is assumed that noise kw  is Gaussian with 

mean 0wµ =  and standard deviation 0wσ > , i.e. { }2; 0,t ww N σ⋅∼ . 

 

Probability density functions of xk  
For the probability density function of kx  it is assumed that 

• the process kx  for 1,2, ,k K= …  is a sequence of independent and identically 

distributed (i.i.d.) random variables; 
• for each sample kx  where 1,2, ,k K= … , the random variables ,1 ,2 ,, , ,

pk k k nx x x…  

are sampled uniformly from the intervals  
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( ) ( )
( ) ( ) ( ) ( )

, ln , ln

ln ln , ln ln

LOW HIGH

j j j j j j j j

j j j j j j

z z z b z b

z b z b

   + +   

 = + − + + 

ɶ ɶ ɶ ɶ≜ ℓ ℓ

ɶ ɶℓ ℓ
 (38) 

 
for 1,2, , pj n= … , where  

- jzɶ  are chosen values for each 1,2, , pj n= …  in ( )1 2Col , , ,
pnz z z z=ɶ ɶ ɶ ɶ…  

- bias parameters jb for 1,2, , pj n= …  in  ( )1 2Col , , ,
pnb b b b≜ …  

- uncertainty parameters jℓ  for 1,2, , pj n= …  in  ( )1 2Col , , ,
pnℓ ≜ ℓ ℓ … ℓ  

 

4.3 Sampling methods 

Two sampling methods are used in Step 3a to draw samples according to the 

probability density function of xk, i.e. Standard Random Sampling (SRS) and Latin 

Hypercube Sampling (LHS).  

 

4.3.1 Standard Random Sampling (SRS) 

In this case, for each sample ( ),1 ,2 ,Col , , ,
pk k k k nx x x x= …  where 1,2, ,k K= … , it is 

assumed that the random variables ,1 ,2 ,, , ,
pk k k nx x x… are mutually independent and 

each random variable ,k jx  for 1,2, , pj n= …  is according to a uniform density on the 

the interval in (38). 

 

4.3.2 Latin Hypercube Sampling (LHS) 

In this case for each ( ),1 ,2 ,Col , , ,
pk k k k nx x x x= …  Latin Hypercube sampling is applied. 

Latin Hypercube picks K different values from each of the pn  random variables 

,1 ,2 ,, , ,
pk k k nx x x… from a uniform density as follows: 

1. For each random variable ,k jx  for 1,2, , pj n= …  in ( ),1 ,2 ,Col , , ,
pk k k k nx x x x= …  the 

interval ( ) ( ), ln , lnLOW HIGH

j j j j j j j jz z z b z b   + +   ɶ ɶ ɶ ɶ≜ ℓ ℓ  is divided into K  pieces 

such that there is equal probability per piece. 

2. From each of the K intervals a single value is sampled at random, according to a 

uniform density on that interval. This produces a sample of K  values for each 

input distribution that are more uniformly spread out than for standard random 

sampling.  

3. The K  values thus obtained for ,1kx  are paired randomly (equally likely 

combinations) with the K  values of ,2kx . These K  pairs are combined in a 
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random manner with the K  values of ,3kx  to form K  triplets, and so on. Each 

pairing is done by associating a random permutation of the K  integers with each 

input variable. 

This results in an ( pK n× ) matrix9 of input, where the k th row contains specific values 

of each of the pn  input variables, to be used on the k th sample. 

 

 

 

 

                                                 
9 This is matrix X in (22) 
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5 Examples for use in MC simulation 
 

This subsection gives an overview of examples that will be used for the Monte Carlo 
simulations. All examples have the same values for the number of components pn , 

intercept term 0f , vector ( )1 2Col , , ,
pnF f f f≜ … , values ( )1 2Col , , ,

pnx x x xɶ ɶ ɶ ɶ≜ … , bias 

vector ( )1 2Col , , ,
pnb b b b≜ …  and uncertainty parameters ( )1 2Col , , ,

pnℓ ≜ ℓ ℓ … ℓ , and 

the same kind of the noise process { }kw  is assumed as explained hereafter. The steps 

below refer to the steps in the Monte Carlo simulation approach as introduced in 

Subsection 4.1. 

 

 

Step 1: Setup 
The values of the parameters in the examples considered in this report, as specified by 

Step 1 (Setup) of the Monte Carlo simulation approach (as described in Subsection 

4.1), are as follows: 
1.a. For the number of components pn , intercept term 0f  and  vector  

( )1 2 p

T
nF f f f= ⋯ , in all examples in Sections 6 and 7 the following 

values are assumed:  

 
 np = 8 , 0 0.5f = ,  

1 2 3 4 5 6 7 80.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8f f f f f f f f= = = = = = = =  

 

In Section 8 the following values are assumed: 

 
np = 200 , 0 0.5f = , 1 200( ) ( ) (0.1 12)init endf f f f= =⋯ ⋯ ⋯ , where 

( )1
round ;1

1j init end init
p

j
f f f f

n

 −= + −  − 
 for 1,2, , pj n= …  where the function 

round means that the number in the first argument is rounded up til the nearest 1 

(second argument in round function) decimal place. 

 
1.b. For the probability density function for random variable kw , in all examples the 

following is assumed (as in Subsection 4.2). Noise process { }kw  for 

1,2, ,k K= …  is an independent and identically distributed (i.i.d.) sequence of 

random variables, with kw  Gaussian with mean 0wµ =  and standard deviation 

0wσ > , i.e. { }20,i ww N σ∼ . In the simulations, various values for 0wσ >  will 

be used. 
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1.c. For the probability density function for random variable kx , sampling is applied 

on the following interval  (see also Subsection 4.2): 

 

( ) ( ) ( ) ( ), ln ln , ln lnLOW HIGH

j j j j j j j jz z z b z b   = + − + +   ɶ ɶ ɶ ɶℓ ℓ , 

 
where in each of the examples it is assumed that 1jz =ɶ , 1jb =  and 2j =ℓ  for 

each j = 1,2,...,np. The choice for 1jz =ɶ  is made for normalization. With these 

parameter values the sampling interval is 

 

[ ], 1 ln 2,1 ln 2 [0.31,1.69]LOW HIGH

j jz z  = − + ≈ ɶ ɶ . 

 

1.d. In the simulations, the chosen values for K, will be varied from 2 through 50000. 

 

In the examples considered in this report we will vary the values for K and for the 
standard deviation wσ ; all other parameter values are fixed. 

 

Step 2: Type of least squares estimation and sampling method 
2.a. Four types of least squares estimation are applied, i.e. CLS, LS-MP, PLS-N and 

PLS-S. 

2.b. For each of the estimation types, both SRS and LHS are considered to draw 
samples for kx .  

 

This results in the following eight algorithms, though not all will be considered as 

becomes clear in the next section. 

Algorithm Estimation type Sampling type 

A.1 Classical Least Squares (CLS)  SRS 

A.2 Classical Least Squares (CLS)  LHS 

B.1 Least Squares with Moore-Penrose (LS-MP) SRS 

B.2 Least Squares with Moore-Penrose (LS-MP) LHS 

C.1 NIPALS based Partial Least Squares (PLS-N) SRS 

C.2 NIPALS based Partial Least Squares (PLS-N) LHS 

D.1 SIMPLS based Partial Least Squares (PLS-S)  SRS 

D.2 SIMPLS based Partial Least Squares (PLS-S) LHS 

 

Step 3: Evaluate least squares estimator using Monte Carlo simulation 
The chosen values for the number of Monte Carlo simulations runs, for each of the 

examples is N  = 100. 

Subsequently apply steps 3a-3d of the Monte Carlo simulation approach as introduced 

in Subsection 4.1 (see Page 38). 
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Step 4: Determine mean and standard deviation of least squares estimator over 
all MC simulation runs 
Determine mean and standard deviations. 
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6 Monte Carlo simulation results 
 

In this section the results of the Monte Carlo simulations are discussed for each of the 

following algorithms. 

 

Algorithm Estimation type Sampling type 

A.1 Classical Least Squares (CLS)  SRS 

A.2 Classical Least Squares (CLS)  LHS 

B.1 Least Squares with Moore-Penrose (LS-MP) SRS 

B.2 Least Squares with Moore-Penrose (LS-MP) LHS 

C.1 NIPALS based Partial Least Squares (PLS-N) SRS 

D.1 SIMPLS based Partial Least Squares (PLS-S)  SRS 

 

In the simulations, the chosen values for K and the chosen values for standard 
deviation wσ , have been varied from low to high. 

 

In this section the following is discussed: 

• Results for Classical Least Squares (CLS) with both SRS and LHS are discussed 

in Subsection 6.1.  

• Results for Least Squares with Moore-Penrose (LS-MP) with both SRS and LHS 

are discussed in Subsection 6.2.  

• Results for NIPALS based Partial Least Squares (PLS-N) compared to results for 

LS-MP are discussed in Subsection 6.3.  

• Results for SIMPLS based Partial Least Squares (PLS-S) compared to results for 

LS-MP are discussed in Subsection 6.4. 

• A summarising discussion is given in Subsection 6.5. 
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6.1 Discussion of results for CLS Algorithms A.1 and A.2 
 

Results for Classical Least Squares (CLS) with both sampling types SRS and LHS are 

presented in this subsection. As explained in Subsection 3.3, in order to apply CLS, 
the following should hold true: matrix 0 0

TX X  must be invertible, i.e. 

( )0 0rank T
pX X n= . This can only happen for 1pK n≥ + , not for pK n≤ . This means 

that the CLS approach is not suitable for pK n≤ . So the results presented in this 

subsection are for values of K  larger than or equal to the number of regression 
components pn . 

 

The specific results that are presented in this subsection are: 

• The mean ˆ( )jfµ  and the true values for jf for each 1,2, , pj n= … . 

• The standard deviation ˆ( )jfσ  divided by /w Kσ , i.e. ˆ( ) /j wf Kσ σ , which is 

referred to as the normalized standard deviation of ˆ( )jfσ . The reason for doing so 

is that the standard deviations ˆ( )jfσ  are expected to be proportional to the 

standard deviation wσ  and inversely proportional to the square root of K for each 

1,2, , pj n= … .  

 

This subsection is organised as follows: 
• In Subsection 6.1.1, we vary K  for a fixed standard deviation wσ .  

• In Subsection 6.1.2, we vary standard deviation wσ  for a fixed K . 

• In Subsection 6.1.3, we vary standard deviation wσ  for a fixed K  close to the 

number of regression components pn . 

• In Subsection 6.1.4, the results obtained in Subsections 6.1.1 through 6.1.3 for 

CLS algorithms A.1 and A.2 are discussed. 

 

 

6.1.1 Variation of K and fixed σw  

Consider algorithm A.1, i.e. for CLS with SRS, for a fixed value of the standard 
deviation wσ  and with variation of K , as specified in the following table: 

 

Algorithm Values for K Values for σw 

A.1 (CLS with SRS) K = {9, 10, 11, 12, 14, 16, 18, 20, 

50, 100} 

σw = 0.5 
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The following two figures present: 

• The mean ˆ( )jfµ  as a function of the parameter index 1,2, , pj n= …  for each of 

the values of K  as specified in the above table, and the true values for   

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ . 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for each of the parameter 

indices 1,2, , pj n= …  as a function of K  . To make the figures readable, both the 

horizontal and vertical axes are presented in a logarithmic scale. 
 

A.1 (CLS with SRS) and sigma_w = 0.5
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Figure 3. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm A.1 

(CLS with SRS) for σw =0.5 and K = {9, 10, 11, 12, 14, 16, 18, 20, 50, 100}. The 
red line indicated as ‘Real fj’ represents the true values for jf . 

 
Remark: From this point on in several of the figures, the legend sometimes refer to 

m1 through m8, this should be read as f1 through f8 (This applies to Figures 4, 7, 24 
and 30-48). Moreover real fj should be read as true jf . 

 

A.1 (CLS with SRS) and sigma_w = 0.5
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Figure 4. Normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 1,2,..., np with 

algorithm A.1 (LS-MP with SRS) for σw =0.5 as a function of K = {9, 10, 11, 12, 
14, 16, 18, 20, 50, 100}. 
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To show the effect of the type of sampling technique SRS or LHS, consider both 

algorithms A.1 and A.2, i.e. for CLS with SRS and LHS respectively, for the same 
fixed value of the standard deviation wσ  and variation of K , as specified in the table 

above, that is:  

 

Algorithm Values for K Values for σw 

A.1 (CLS with SRS; black line)  

and A.2 (CLS with LHS; red line) 

K = {9, 10, 11, 12, 14, 16, 18, 

20, 50, 100} 

σw = 0.5 

The following figure presents: 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 1, i.e. for parameter 1m =  

0.1, as a function of K  for algorithm A.1 (i.e. with SRS; black line) and algorithm 

A.2 (i.e. with LHS; red line), and where both the horizontal and vertical axes are 

presented in a logarithmic scale.  
 

A.1 (CLS & SRS; black) & A.2 (CLS & LHS; red): f1=0.1, sigma_w=0.5  
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Figure 5. Normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 1, i.e. for 

parameter 1f =  0.1, with algorithms A.1 (CLS with SRS) and A.2 (CLS with 
SRS) for σw =0.5 as a function of K = {9, 10, 11, 12, 14, 16, 18, 20, 50, 100}. 
 

 

6.1.2 Variation of σw and fixed K  

Consider algorithm A.2, i.e. for CLS with LHS, for a fixed value of K  and variation 
of standard deviation wσ , as specified in the following table: 

 

Algorithm Values for K Values for σw 

A.2 (CLS with LHS) K = 16 wσ  = {0.001, 0.01, 0.1, 0.2, 0.4, 

0.8, 1, 2, 5, 10} 
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The following two figures present: 

• The mean ˆ( )jfµ  as a function of the parameter index 1,2, , pj n= …  for each of 

the values of wσ  as specified in the above table, and the true values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ . 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for each of the parameter 

indices 1,2, , pj n= …  as a function of wσ  where both the horizontal and vertical 

axes are presented in a logarithmic scale.  
 

A.2 (CLS with LHS) and K = 16
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Figure 6. Mean ˆ( )jfµ  values as a function of j = 1,2,..., np with algorithm A.2 

(CLS with LHS) for K = 16 and σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10}. The 
red line indicated as ‘Real fj’ represents the true values for jf . 

 

 

A.2 (CLS with LHS) and K = 16 
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Figure 7. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm A.2 (CLS with LHS) for K = 16 as a function of σw = {0.001, 0.01, 0.1, 
0.2, 0.4, 0.8, 1, 2, 5, 10}. 
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To show the effect of the type of sampling technique SRS or LHS, consider both 

algorithms A.1 and A.2, i.e. for CLS with SRS and LHS respectively, for the same 
fixed value of S  and variation of standard deviation wσ , as specified in the table 

above, that is:  

Algorithm Values for K Values for σw 

A.1 (CLS with SRS; black line) and 

A.2 (CLS with LHS; red line) 

K = 16 wσ  = {0.001, 0.01, 0.1, 

0.2, 0.4, 0.8, 1, 2, 5, 10} 

 

 

The following figure presents: 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 5, i.e. for parameter 5f =  

1.6, as a function of wσ  for algorithm A.1 (i.e. with SRS; black line) and 

algorithm A.2 (i.e. with LHS; red line), and where both the horizontal and vertical 

axes are presented in a logarithmic scale 
 

A.1 (CLS & SRS; black) & A.2 (CLS & LHS; red): f5=1.6, S = 16
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Figure 8. Normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 5, i.e. for 

parameter 5f =  1.6, with algorithms A.1 (CLS with SRS) and A.2 (CLS with 
SRS) for K = 16 as a function of σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10}. 
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6.1.3 Variation of σw and fixed K close to np 

 

Consider algorithm A.2, i.e. for CLS with LHS, for a fixed value of K  and variation 
of standard deviation wσ , as specified in the following table: 

 

Algorithm Values for K Values for σw 

A.1 (CLS with SRS) K = 9 wσ  = {0.001, 0.01, 0.1, 0.2, 0.4, 

0.8, 1, 2, 5, 10} 

 

The following figures present: 

• The mean ˆ( )jfµ  as a function of the parameter index 1,2, , pj n= …  for K = 9 and 

wσ  = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2} and the true values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ . For this case, the 

obtained values of the mean ˆ( )jfµ  become rather inaccurate in case wσ  = 5 or 10, 

therefore they have not been shown in the figure below. 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for each of the parameter 

indices 1,2, , pj n= …  as a function of wσ  where both the horizontal and vertical 

axes are presented in a logarithmic scale.  
 

A.2 (CLS with LHS) and K = 9 
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Figure 9. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm A.2 

(CLS with LHS) for K = 9 and σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2}. The scale 
of the vertical axis in Figure 9 is larger than in Figure 3 or Figure 6. 
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A.2 (CLS with LHS) and K = 9 
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Figure 10. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm A.2 (CLS with LHS) for K = 9 as a function of σw = {0.001, 0.01, 0.1, 
0.2, 0.4, 0.8, 1, 2, 5, 10}. 
 

 

Consider algorithm A.1, i.e. for CLS with SRS, for a fixed value of K  and variation 
of standard deviation wσ , as specified in the following table: 

 

Algorithm Values for K Values for σw 
A.1 (CLS with SRS) K = 10 wσ  = {0.001, 0.01, 0.1, 0.2, 0.4, 

0.8, 1, 2, 5, 10} 

 

The following two figures present: 

• The mean ˆ( )jfµ  as a function of the parameter index 1,2, , pj n= … for each of the 

values of wσ  as specified in the above table, and the true values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ . 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for each of the parameter 

indices 1,2, , pj n= …  as a function of wσ  where both the horizontal and vertical 

axes are presented in a logarithmic scale.  
 



iFly 6th Framework programme Deliverable D7.2f 

 

22 March 2011 TREN/07/FP6AE/S07.71574/037180 IFLY Page 53/144 

 

A.1 (CLS with SRS) and K = 10 
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Figure 11. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm A.1 

(CLS with SRS) for K = 10 and σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10}. The 
red line indicated as ‘Real fj’ represents the true values for jf .  

 

A.1 (CLS with SRS) and K = 10 
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Figure 12. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm A.1 (CLS with SRS) for K = 10 as a function of σw = {0.001, 0.01, 0.1, 
0.2, 0.4, 0.8, 1, 2, 5, 10}. 
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To show the effect of the type of sampling technique SRS or LHS, consider both 

algorithms A.1 and A.2, i.e. for CLS with SRS and LHS respectively, for the same 
fixed value of K  and variation of standard deviation wσ , as specified in the table 

above, that is:  

 

Algorithm Values for K Values for σw 
A.1 (CLS with SRS; black line) and 

A.2 (CLS with LHS; red line) 

K = 10 wσ  = {0.001, 0.01, 0.1, 

0.2, 0.4, 0.8, 1, 2, 5, 10} 

 

The following figure presents: 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 8, i.e. for parameter 8f =  

12.8, as a function of wσ  for algorithm A.1 (i.e. with SRS; black line) and 

algorithm A.2 (i.e. with LHS; red line), and where both the horizontal and vertical 

axes are presented in a logarithmic scale. 
 

A.1 (CLS & SRS; black) & A.2 (CLS & LHS; red): f8=12.8, K = 10
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Figure 13. Normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 8, i.e. for 

parameter 8f =  12.8, with algorithms A.1 (LS-MP with SRS) and B.2 (LS-MP 
with SRS) for K = 10 as a function of σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 
10}. 
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6.1.4 Discussion of results for CLS Algorithms A.1 and A.2 

Here, a summarising discussion is given of the results presented in Subsections 6.1.1 

through 6.1.3 for CLS algorithms A.1 and A.2. 

 

Mean ˆ( )jfµ : 

• The results show that for most values of K ≥ 9 and σw, the obtained values for the 

mean ˆ( )jfµ  approach the true values of jf  very accurately, though with the 

exception of K being close to np or of σw being very large. For example for K = 9 

in Figure 3 and in Figure 9 the obtained values for the mean ˆ( )jfµ  become 

inaccurate, similarly for σw = 5 and σw = 10 in Figure 6 and Figure 11 

respectively. 

 

Normalized standard deviation ˆ( ) /j wf Kσ σ : 

• For K close to np (i.e. K = 9 and 10), the obtained values for the normalized 

standard deviation ˆ( ) /j wf Kσ σ  sometimes become relatively large (see Figure 

4 and Figure 12).  
- For K = 9 and wσ  = { 0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10 } the values of 

the normalized standard deviations ˆ( ) /j wf Kσ σ  for all 1,2, , pj n= … in 

Figure 10 vary between 19 and 1290.  
- For K = 10 and wσ  = { 0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10 } the values of 

the normalized standard deviations ˆ( ) /j wf Kσ σ  for all 1,2, , pj n= … in 

Figure 12 vary between 8 and 48. For σw = 0.01, the obtained values for 
ˆ( ) /j wf Kσ σ  vary between 11 and 48, whereas for σw = 0.001, 0.4 and 10, the 

obtained values for ˆ( ) /j wf Kσ σ  vary between 8 and 14. 

- For K = 9, large values of ˆ( ) /j wf Kσ σ  occur more often than for K = 10. 

• For K = 16 and wσ  = { 0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10 } the values of 

the normalized standard deviations ˆ( ) /j wf Kσ σ  for all 1,2, , pj n= … , fall all 

within the range of 3.0 to 4.7 (See Figure 7). 
• For K > 9 (i.e. 1pK n> + ), the results show that the larger K becomes, the 

smaller the obtained values for ˆ( ) /j wf Kσ σ  for 1,2, , pj n= … become. For 

example in Figure 4 with σw = 0.5, the obtained values for the normalized 

standard deviations ˆ( ) /j wf Kσ σ  for K = 10 fall within the range 7-15.5 and for 

K = 100 fall within the range 2.3-3. 
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LHS versus SRS: 
• For all K ≥ 9 and for all σw as considered in the simulations, sometimes SRS 

yields smaller values of the normalized standard deviations ˆ( ) /j wf Kσ σ , and 

sometimes LHS does (See Figure 5, Figure 8 and Figure 13). However no 

systematic differences can be observed between results obtained with SRS and 

LHS. 
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6.2 Discussion of results for LS-MP Algorithms B.1 and B.2 

Results for Least Squares with Moore-Penrose (LS-MP) with both sampling types 

SRS and LHS are presented in this subsection.  

 

This subsection is organised as follows: 
• In Subsection 6.2.1, we vary K  for a fixed low value of standard deviation wσ .  

• In Subsection 6.2.2, we vary K  for a fixed high value of standard deviation wσ . 

• In Subsection 6.2.3, we vary standard deviation wσ  for a fixed K  (= 16). 

• In Subsection 6.2.4, we vary standard deviation wσ  for a fixed K   (= 10) close to 

the number of regression components pn . 

• In Subsection 6.2.5, the results obtained in Subsections 6.2.1 through 6.2.4 for LS-

MP algorithms B.1 and B.2 are discussed. 

• In Subsection 6.2.6, the results obtained for CLS algorithm A.1 and LS-MP 

algorithm B.1 (based on Subsections 6.1.1- 6.1.3 and Subsections 6.2.1- 6.2.4), 

both with SRS are discussed. 

 

6.2.1 Variation of K and fixed low value of σw  

Consider algorithm B.2, i.e. for LS-MP with LHS, for a fixed value of the standard 
deviation wσ  and with variation of K , as specified in the following table: 

 

Algorithm Values for K Values for σw 

B.2 (LS-MP with LHS) K = {4, 6, 8, 9, 10, 25, 50, 100, 

500, 1000} 

σw = 0.01 

 

The following two figures present: 

• The mean ˆ( )jfµ  as a function of the parameter index 1,2, , pj n= … for each of the 

values of K  as specified in the above table, and the true values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ . 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for each of the parameter 

indices 1,2, , pj n= …  as a function of K  where both the horizontal and vertical 

axes are presented in a logarithmic scale.  

 

 



iFly 6th Framework programme Deliverable D7.2f 

 

22 March 2011 TREN/07/FP6AE/S07.71574/037180 IFLY Page 58/144 

 

B.2 (LS-MP with LHS) and sigma_w = 0.01
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Figure 14. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm B.2 

(LS-MP with LHS) for σw =0.01 and K = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000}. 
The red line indicated as ‘Real fj’ represents the true values for jf .  

 

B.2 (LS-MP with LHS) and sigma_w = 0.01
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Figure 15. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm B.2 (LS-MP with LHS) for σw =0.01 as a function of K = {4, 6, 8, 9, 
10, 25, 50, 100, 500, 1000}. 
 

To show the effect of the type of sampling technique SRS or LHS, consider both 

algorithms B.1 and B.2, i.e. for LS-MP with SRS and LHS respectively, for the same 
fixed value of the standard deviation wσ  and variation of K , as specified in the table 

above, that is:  

 

Algorithm Values for K Values for σw 

B.1 (LS-MP with SRS; black line) and 

B.2 (LS-MP with LHS; red line) 

K = {4, 6, 8, 9, 10, 25, 

50, 100, 500, 1000} 

σw = 0.01 
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The following figure presents: 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 1, i.e. for parameter 1f =  

0.1, as a function of K  for algorithm B.1 (i.e. with SRS; black line) and algorithm 

B.2 (i.e. with LHS; red line), and where both the horizontal and vertical axes are 

presented in a logarithmic scale. 

 

B.1 (LS-MP & SRS; black) & B.2 (LS-MP & LHS; red): f1=0.1, sigma_w=0.01   
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Figure 16. Normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 1, i.e. for 

parameter 1f =  0.1, with algorithms B.1 (LS-MP with SRS) and B.2 (LS-MP with 
LHS) for σw = 0.01 as a function of K = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000}. 
 

 

6.2.2 Variation of K and fixed high value of σw  

Consider algorithm B.1, i.e. for LS-MP with SRS, for a fixed value of the standard 
deviation wσ  and with variation of K , as specified in the following table: 

 

Algorithm Values for K Values for σw 

B.1 (LS-MP with SRS) K = {2, 4, 6, 8, 9, 10, 11, 20, 

35, 100} 

σw = 0.5 

 

The following two figures present: 

• The mean ˆ( )jfµ  as a function of the parameter index 1,2, , pj n= … for each of the 

values of K  as specified in the above table, and the true values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ . 

• The normalized standard deviation ˆ( ) /j wf Kσ σ for each of the parameter indices 

1,2, , pj n= …  as a function of K  where both the horizontal and vertical axes are 

presented in a logarithmic scale.  
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B.1 (LS-MP with SRS) and sigma_w = 0.5
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Figure 17. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm B.1 

(LS-MP with SRS) for σw = 0.5 and K = {2, 4, 6, 8, 9, 10, 11, 20, 35, 100}. The red 
line indicated as ‘Real fj’ represents the true values for jf . 

 

 

B.1 (LS-MP with SRS) and sigma_w = 0.5
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Figure 18. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm B.1 (LS-MP with SRS) for σw = 0.5 as a function of K = {2, 4, 6, 8, 9, 10, 
11, 20, 35, 100}. 
 

 

To show the effect of the type of sampling technique SRS or LHS, consider both 

algorithms B.1 and B.2, i.e. for LS-MP with SRS and LHS respectively, for the same 
fixed value of the standard deviation wσ  and variation of K , as specified in the table 

above, that is:  

 

Algorithm Values for K Values for σw 

B.1 (LS-MP with SRS; black line) and 

B.2 (LS-MP with LHS; red line) 

K = {2, 4, 6, 8, 9, 10, 

11, 20, 35, 100} 

σw = 0.5 
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The following figure presents: 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 1, i.e. for parameter 1f =  

0.1, as a function of K  for algorithm B.1 (i.e. with SRS; black line) and algorithm 

B.2 (i.e. with LHS; red line), and where both the horizontal and vertical axes are 

presented in a logarithmic scale 

 

B.1 (LS-MP & SRS; black) & B.2 (LS-MP & LHS; red): f1=0.1, sigma_w=0.5  
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Figure 19. Normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 1, i.e. for 

parameter 1f =  0.1, with algorithms B.1 (LS-MP with SRS) and B.2 (LS-MP with 
SRS) for σw = 0.5 as a function of K = {2, 4, 6, 8, 9, 10, 11, 20, 35, 100}. 
 
 
 

6.2.3 Variation of σw value for K = 16 

Consider algorithm B.1, i.e. for LS-MP with SRS, for a fixed value of K  and 
variation of standard deviation wσ , as specified in the following table: 

Algorithm Values for K Values for σw 
B.1 (LS-MP with SRS) K = 16 wσ  = {0.001, 0.01, 0.1, 0.2, 0.4, 

0.8, 1, 2, 5, 10} 

 

The following two figures present: 

• The mean ˆ( )jfµ  as a function of the parameter index 1,2, , pj n= … for each of the 

values of wσ  as specified in the above table, and the true values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ . 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for each of the parameter 

indices 1,2, , pj n= …  as a function of wσ  where both the horizontal and vertical 

axes are presented in a logarithmic scale.  
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B.1 (LS-MP with SRS) and K = 16 
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Figure 20. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm B.1 

(LS-MP with SRS) for K = 16 and σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10}. 
The red line indicated as ‘Real fj’ represents the true values for jf . 

 

B.1 (CL-MP with SRS) and K = 16 
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Figure 21. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm B.1 (LS-MP with SRS) for K = 16 as a function of σw = {0.001, 0.01, 0.1, 
0.2, 0.4, 0.8, 1, 2, 5, 10}. 
 

To show the effect of the type of sampling technique SRS or LHS, consider both 

algorithms B.1 and B.2, i.e. for LS-MP with SRS and LHS respectively, for the same 
fixed value of K  and variation of standard deviation wσ , as specified in the table 

above, that is:  

 

Algorithm Values for K Values for σw 

B.1 (LS-MP with SRS; black line) and 

B.2 (LS-MP with LHS; red line) 

K = 16 wσ  = {0.001, 0.01, 0.1, 

0.2, 0.4, 0.8, 1, 2, 5, 10} 
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The following figure presents: 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 1, i.e. for parameter 1f =  

0.1, as a function of wσ  for algorithm B.1 (i.e. with SRS; black line) and 

algorithm B.2 (i.e. with LHS; red line), and where both the horizontal and vertical 

axes are presented in a logarithmic scale. 

 
 

B.1 (LS-MP & SRS; black) & B.2 (LS-MP & LHS; red): f1=0.1, K = 16
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Figure 22. Normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 1, i.e. for 

parameter 1f =  0.1, with algorithms B.1 (LS-MP with SRS) and B.2 (LS-MP with 
SRS) for K = 16 as a function of σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10}. 

 

 

6.2.4 Variation of σw value for K = 10 

Consider algorithm B.1, i.e. for LS-MP with SRS, for a fixed value of K  and 
variation of standard deviation wσ , as specified in the following table: 

 

Algorithm Values for K Values for σw 
B.1 (LS-MP with SRS) K = 10 wσ  = {0.001, 0.01, 0.1, 0.2, 0.4, 

0.8, 1, 2, 5, 10} 
 

The following two figures present: 

• The mean ˆ( )jfµ  as a function of the parameter index 1,2, , pj n= …  for each of 

the values of wσ  as specified in the above table, and the true values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ . 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for each of the parameter 

indices 1,2, , pj n= … as a function of wσ  where both the horizontal and vertical 

axes are presented in a logarithmic scale.  
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B.2 (LS-MP with LHS) and K = 10
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Figure 23. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm B.2 

(LS-MP with LHS) for K = 10 and σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10}. 
The red line indicated as ‘Real fj’ represents the true values for jf . 

 

B.2 (LS-MP with LHS) and K = 10 
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Figure 24. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm B.2 (LS-MP with LHS) for K = 10 as a function of σw = {0.001, 0.01, 
0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10}. 
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To show the effect of the type of sampling technique SRS or LHS, consider both 

algorithms B.1 and B.2, i.e. for LS-MP with SRS and LHS respectively, for the same 
fixed value of K  and variation of standard deviation wσ , as specified in the table 

above, that is:  

 

Algorithm Values for K Values for σw 
B.1 (LS-MP with SRS; black line) and 

B.2 (LS-MP with LHS; red line) 

K = 16 wσ  = {0.001, 0.01, 0.1, 

0.2, 0.4, 0.8, 1, 2, 5, 10} 

 

The following figure presents: 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 8, i.e. for parameter 8f =  

12.8, as a function of wσ  for algorithm B.1 (i.e. with SRS; black line) and 

algorithm B.2 (i.e. with LHS; red line), and where both the horizontal and vertical 

axes are presented in a logarithmic scale. 

 

 

 
 

B.1 (LS-MP & SRS; black) & B.2 (LS-MP & LHS; red): f8=12.8, K = 10
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Figure 25. Normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 8, i.e. for 

parameter 8f =  12.8, with algorithms B.1 (LS-MP with SRS) and B.2 (LS-MP 
with SRS) for K = 10 as a function of σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 
10}. 
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6.2.5 Discussion of results for LS-MP Algorithms B.1 and B.2 

 

Here, a summarising discussion is given of the results presented in Subsections 6.2.1 

through 6.2.4 for LS-MP algorithms B.1 and B.2.  

 

Mean ˆ( )jfµ : 

• For 2 pK n≤ ≤ : The results show that the smaller K is, the more inaccurate the 

mean ˆ( )jfµ for 1,2, , pj n= … becomes when compared to the true values of jf  

(See Figure 14 and Figure 17). 

• Similarly as was observed for CLS Algorithms A.1 and A.2, the results show that 

for most values of K ≥ 9 and σw, the obtained values for the mean ̂( )jfµ  approach 

the true values of jf  very accurately, though with the exception of K being too 

close to Np or of σw being too large. For example for K = 9 in Figure 14 and in 

Figure 17 the obtained values for the mean ̂( )jfµ  become inaccurate, similarly for 

σw = 5 and σw = 10 in Figure 20 and Figure 23 respectively). The larger 

σw becomes, the more inaccurate the mean ̂( )jfµ  for 1,2, , pj n= … becomes as 

can be observed from Figure 20 (i.e. for σw = 5 and σw = 10) and in Figure 23 (i.e. 

for σw = 2, 5, 10).  

 

Normalized standard deviation ˆ( ) /j wf Kσ σ : 

• The obtained values for ˆ( ) /j wf Kσ σ  for the case that 2 pK n≤ ≤  and wσ  is 

small ( wσ = 0.0.1) are much larger than for the case that K is much larger than np 

(See Figure 15). For example: 

- for 2 pK n≤ ≤ , the obtained values for ˆ( ) /j wf Kσ σ  are larger than 102; 

- for  K ≥  25, the obtained values for ˆ( ) /j wf Kσ σ  are smaller than 5.  

This effect does not occur for larger values of wσ , see Figure 18 for wσ = 0.5. 

• Similarly as was observed for CLS Algorithms A.1 and A.2, the results show that 

for K close to np (i.e. for  K = 9 and less often for K = 10), the obtained values for 

the normalized standard deviation ˆ( ) /j wf Kσ σ  sometimes become relatively 

large (see Figure 15, Figure 18 and Figure 24) in combination with more 

inaccuracies in the mean ˆ( )jfµ .  

• For K > 9 (i.e. 1pK n> + ), the results show that the larger K becomes the smaller 

the obtained values for ˆ( ) /j wf Kσ σ  for 1,2, , pj n= … become. For example in 

Figure 15 with σw = 0.01, the obtained values for the normalized standard 

deviations ˆ( ) /j wf Kσ σ  for K = 10 fall within the range 8-16 and for K = 500 

fall within the range 2.2-2.8. In Figure 18 with σw = 0.5, the obtained values for 
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the normalized standard deviations for K = 10 fall within the range 7-15 and for 

K = 500 fall within the range 2.2-2.8.  
• For larger values of σw  (= 0.5), and for K = 9 and K = 10 (i.e. for 1pK n= + and 

2pK n= + ) sometimes the obtained values for the mean ˆ( )jfµ  have large 

deviations from the true values of jf  (See Figure 17), and also the obtained 

values for the normalized standard deviations ̂( ) /j wf Kσ σ  for 1,2, , pj n= …  

turn out to be relatively large (See Figure 18). The Monte Carlo simulations 

showed that this can happen for both SRS and for LHS. For smaller values of σw  

(= 0.01) this did occur less for K = 9 and not for K = 10. These inaccuracies 
which sometimes occur for 1pK n= + , and less often for 2pK n= + , might be 

caused by matrix 0 0
TX X  having a high condition number.  

• For K = 16 and wσ  = { 0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10 } the values of 

the normalized standard deviations ̂( ) /j wf Kσ σ  for all 1,2, , pj n= … , fall within 

the range 2.8-5.6 (See Figure 21). 
• For K = 10 and wσ  = { 0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10 } the values of 

the normalized standard deviations ˆ( ) /j wf Kσ σ  for all 1,2, , pj n= … in Figure 

24 varies between 6 and 147. For σw = 2, the obtained values for ˆ( ) /j wf Kσ σ  

varies between 48 and 147, whereas for σw = 0.1 and 10, the obtained values for 
ˆ( ) /j wf Kσ σ  are much smaller as they vary between 6 and 11. 

 

 

LHS versus SRS: 
• For all K and for all σw as considered in the simulations, sometimes SRS yields 

smaller values of the normalized standard deviations ˆ( ) /j wf Kσ σ , and 

sometimes LHS does (See Figure 16, Figure 19, Figure 22 and Figure 25). 

However no systematic differences can be observed between results obtained 

with SRS and LHS. 
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6.2.6 Discussion of results for CLS Algorithm A.1 versus LS-MP Algorithm B.1 

 

Comparison of simulation results of Algorithms A.1 (=CLS with SRS) and B.1 (=LS-

MP with SRS) shows that: 
• For pK n> , the simulation results show that the algorithms with LS-MP gives 

the same values for the mean ˆ( )jfµ  and normalized standard deviations 

ˆ( ) /j wf Kσ σ  as CLS does. This can be explained as follows: In the Monte Carlo 

simulations for algorithms A.1 and B.1 (and similarly for algorithms A.2 and 
B.2) it turned out that matrix 0 0

TX X  had full rank for each pK n> , which means 

that matrix 0 0
TX X  is invertible. If the matrix 0 0

TX X  is invertible, then the 

Moore-Penrose inverse and inverse coincide by definition, in which case it is 
obvious that the results for CLS and LS-MP coincide for pK n> .  

• For pK n≤ , the CLS could not be used. 
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6.3 Discussion of results for PLS-N Algorithm C.1 versus LS-MP 
Algorithm B.1 

 

Results for NIPALS based PLS (PLS-N) with sampling type SRS (i.e. algorithm C.1) 

are presented in this subsection and are compared with Least Squares with Moore-

Penrose inverse (LS-MP) with sampling type SRS (i.e. algorithm B.1).  

 

This subsection is organised as follows: 
• In Subsection 6.3.1, we vary K  for a fixed value of standard deviation wσ .  

• In Subsection 6.3.2, the results obtained in Subsection 6.3.1 for PLS-N algorithm 

C.1 and LS-MP algorithm B.1 are discussed. 

 

6.3.1 Variation of K and fixed σw  

Consider algorithms B.1 and C.1 for a fixed value of the standard deviation wσ  and 

with variation of K , as specified in the following table: 
 

Algorithm Values for K Values for σw 

B.1 (LS-MP with SRS) K = {3, 4, 6, 8, 9, 10, 11, 20, 35, 

100} 

σw = 0.5 

C.1 (PLS-N with SRS) K = {3, 4, 6, 8, 9, 10, 11, 20, 35, 

100} 

σw = 0.5 

 

For both of these algorithms, the following two figures present: 

• The mean ˆ( )jfµ  as a function of the parameter index 1,2, , pj n= … for each of the 

values of K  as specified in the above table, and the true values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ . 
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B.1 (LS-MP with SRS) and sigma_w = 0.5
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Figure 26. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm B.1 

(LS-MP with SRS) for σw = 0.5 and K = {3, 4, 6, 8}. The red line indicated as 
‘Real fj’ represents the true values for jf . 

 
 

C.1 (PLS-N with SRS) and sigma_w = 0.5
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Figure 27. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm C.1 

(PLS-N with SRS) for σw =0.5 and K = {3, 4, 6, 8}. The red line indicated as ‘Real 
fj’ represents the true values for jf . 

 

 

To compare the difference between the type of estimation approaches, consider both 

algorithms B.1 and C.1, i.e. LS-MP and PLS-N respectively and both with SRS, for 
the same fixed value of the standard deviation wσ  and variation of K , as specified in 

the table above, that is:  
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Algorithm Values for K Values for σw 

B.1 (LS-MP with SRS; black line) 

C.1 (PLS-N with SRS; red line) 

K = {3, 4, 6, 8, 9, 10, 

11, 20, 35, 100} 

σw = 0.5 

 

The following two figures present: 

• The normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 5, and j = 8 i.e. for 

parameters 5f = 1.6 and 8f = 12.8, as a function of K  for algorithm B.1 (i.e. LS-

MP with SRS; black line) and algorithm C.1 (i.e. PLS-N with SRS; red line), and 

where both the horizontal and vertical axes are presented in a logarithmic scale. 

 

B.1 (LS-MP & SRS; black) & C.1 (PLS-N & SRS; red): f5=1.6, sigma_w=0.5   
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Figure 28. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 5, i.e. for 

parameter 5f =  1.6, with algorithms B.1 (LS-MP with SRS) and C.1 (PLS-N with 
SRS) for σw =0.5 as a function of K = {3, 4, 6, 8, 9, 10, 11, 20, 35, 100}.  
 

B.1 (LS-MP & SRS; black) & C.1 (PLS-N & SRS; red): f8=12.8, sigma_w=0.5
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Figure 29. Normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 8, i.e. for 

parameter 8f =  12.8, with algorithms B.1 (LS-MP with SRS) and C.1 (PLS-N 
with SRS) for σw = 0.5 as a function of K = {3, 4, 6, 8, 9, 10, 11, 20, 35, 100}. 
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6.3.2 Discussion of results for PLS-N Algorithm C.1 versus LS-MP Algorithm 
B.1 

Here, a summarising discussion is given of the results presented in Subsection 6.3.1 

for PLS-N algorithm C.1 and LS-MP algorithm B.1.  

 

Algorithm C.1 (PLS-N with SRS) versus algorithm B.1 (LS-MP with SRS) 
The simulation results obtained show that: 
• For pK n< , sometimes algorithm B.1 yields smaller values of the normalized 

standard deviations ˆ( ) /j wf Kσ σ , and sometimes algorithm C.1 does. See for 

example Figure 28 which shows that algorithm B.1 (LS-MP with SRS) yields 

smaller values for 5
ˆ( ) / wf Kσ σ , whereas in Figure 29 algorithm C.1 (PLS-N 

with SRS) yields smaller values for 8
ˆ( ) / wf Kσ σ . The results also show that 

for pK n< , algorithms B.1 and C.1 gives different numerical values for the mean 

ˆ( )jfµ  (see Figure 26 and Figure 27). 

• For pK n≥ , LS-MP and PLS-N give the same numerical results for the 

normalized standard deviations ˆ( ) /j wf Kσ σ  (see Figure 28 and Figure 29). 

Similarly for pK n≥ , algorithms B.1 and C.1 gives the same numerical values for 

the mean ˆ( )jfµ . 

 

6.4 Comparison of PLS-S Algorithm D.1 versus LS-MP Algorithm B.1 

For the comparison of Algorithm D.1 (PLS-S with SRS) versus Algorithm B.1 (LS-

MP with SRS) only the main findings are summarized. 

 
The simulation results obtained (though not included in this report) have shown that: 
• For pK n< , algorithm B.1 (LS-MP with SRS) and algorithm D.1 (PLS-S with 

SRS) give the same numerical values for both the mean ˆ( )jfµ  and the 

normalized standard deviations ˆ( ) /j wf Kσ σ  (numerical differences are in the 

order 10-9 or smaller). 
• Similarly, for pK n≥ , algorithm B.1 (LS-MP with SRS) and algorithm D.1 (PLS-

S with SRS) give the same numerical values for both the mean ˆ( )jfµ  and the 

normalized standard deviations ˆ( ) /j wf Kσ σ  (numerical differences are in the 

order 10-9 or smaller). 
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6.5 Discussion of results obtained 

Classical Least Squares (CLS) estimation cannot be applied if the number of 
samples  K  is smaller or equal than the number of regression components pn . For the 

CLS algorithm with pK n> , the Monte Carlo simulations show that: 

• For K close to np (in particular for 1pK n= +  and 2pK n= + ), the CLS results 

become inaccurate, i.e. the obtained values for the mean ˆ( )jfµ  become 

inaccurate, and the obtained values for the normalized standard deviation 
ˆ( ) /j wf Kσ σ  can become relativey large. This effect is even stronger when in 

combination with large values of σw. These inaccuracies are caused by an ill-
conditioned matrix 0 0

TX X . 

• For 2pK n> + , the CLS results show that the mean ̂( )jfµ  for 

1,2, , pj n= … approach the true values of jf very accurately and the larger K  is, 

the smaller the normalized standard deviation ̂( ) /j wf Kσ σ  for 

1,2, , pj n= … becomes. So for this case the CLS algorithm is suitable to determine 

estimator ˆ TF = 1 2
ˆ ˆ ˆ( , , , )

pnf f f⋯ . 

• For all pK n≥ , no systematic differences can be observed between results 

obtained with SRS and LHS, as sometimes SRS yields smaller values of the 

normalized standard deviations ˆ( ) /j wf Kσ σ , and sometimes LHS does. 

 

Alternative approaches LS-MP, PLS-N and PLS-S have been applied, and the results 
show that for each value of pK n> , algorithms with LS-MP, PLS-N and PLS-S give 

numerically the same results as CLS does. For LS-MP this also follows from theory, 
since in case the inverse of matrix 0 0

TX X  exists, then the Moore-Penrose inverse and 

inverse coincide by definition. And for pK n≤  the results show that 

• In contrast to CLS, algorithms with LS-MP, PLS-N and PLS-S can also be applied 

for pK n≤ , and the smaller K is, the more the mean ˆ( )jfµ  deviates from real 

value of jf  for 1,2, , pj n= … . 

• Both LS-MP and PLS-S algorithms give the same numerical values for the mean 
ˆ( )jfµ  and normalized standard deviation ̂( ) /j wf Kσ σ , for pK n≤ . 

• The PLS-N algorithm gives different values for the mean ˆ( )jfµ  and normalized 

standard deviation ˆ( ) /j wf Kσ σ  for pK n≤  when compared to LS-MP and PLS-

S. No systematic differences can be observed between the results of PLS-N when 

compared to LS-MP and PLS-S, as sometimes PLS-N yields smaller values of the 

normalized standard deviations ˆ( ) /j wf Kσ σ , and sometimes LS-MP and PLS-S 

do. 
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Regarding sampling types SRS and LHS the results show that 

• For all values of K, no systematic differences can be observed between results 

obtained with SRS and LHS, as sometimes SRS yields smaller values of the 

normalized standard deviations ˆ( ) /j wf Kσ σ , and sometimes LHS does. 

 

Solely based on the numerical results for LS-MP, PLS-N and PLS-S, no specific 

conclusion can be drawn which of the three approaches is preferred. Another aspect 

that can be considered is the calculation speed of the three approaches:  

• The Moore-Penrose inverse is time-consuming for large matrices [Courrieu, 

2005]; see also Subsection 3.4 in this report.  

• The SIMPLS approach directly finds weight vectors which are applied to the 

original matrix X, and without explicit computation of matrix inverses.  

• SIMPLS is also faster than PLS-N ([Alin, 2009]; see also Subsection 3.5 in this 

report.  

• The PLS-S algorithm is the fastest when compared to LS-MP [Courrieu, 2005] 

and PLS-N [De Jong, 1993], [Alin, 2009].  

Thus PLS-S is computationally the best. PLS-S with SRS (i.e. Algorithm D.1) will be 

considered in more detail in Section 7 with the aim to consider the effect of the values 

for the standard deviation wσ  and the effect of K on the mean ˆ( )jfµ  and the 

normalized standard deviations ˆ( ) /j wf Kσ σ . 
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7 Effect of K and σw  
In this section, the effect of standard deviation wσ  and K , on the normalized standard 

deviations ˆ( ) /j wf Kσ σ  for 1,2, , pj n= … , will be analysed for PLS-S with sampling 

type SRS (i.e. Algorithm D.1). In this section the following is discussed: 

• Results for PLS-S with SRS algorithm D.1 with variation of K  in Subsection 7.1. 

• Results for PLS-S with SRS algorithm D.1 with variation of standard deviation 

wσ  in Subsection 7.2. 

• A summarising discussion about the effect of standard deviation wσ  and number 

of samples K on PLS-S algorithm D.1 is given in Subsection 7.3. 

 

7.1 PLS-S Algorithm D.1 and variation of K 

Results for algorithm D.1, i.e. PLS-S with SRS, for fixed value of the standard 
deviation wσ  and with variation of K , are presented in the three subsections hereafter 

for low, high and very high values for wσ  (0.01, 0.5 and 10) respectively. 

 

This subsection is organised as follows: 
• In Subsection 7.1.1, we vary K  for a fixed low value of standard deviation wσ . 

• In Subsection 7.1.2, we vary K  for a fixed high value of standard deviation wσ . 

• In Subsection 7.1.3, we vary K  for a fixed very high value of standard deviation 

wσ . 

 

7.1.1 Variation of K and fixed low value of σw 

Consider algorithm D.1, i.e. PLS-S with SRS, for a fixed value of the standard 
deviation wσ  and with variation of K , as specified in the following table: 

 

Algorithm Values for K Values for σw 

D.1 (PLS-S with SRS) K = {4, 6, 8, 9, 10, 25, 50, 100, 

500, 1000} 

σw = 0.01 

D.1 (PLS-S with SRS) K = {2, 4, 6, 8, 9, 10, 11, 20, 35, 

100} 

σw = 0.01 

D.1 (PLS-S with SRS) K = {100, 300, 600, 800, 1000, 

3000, 5000, 10000, 30000, 50000} 

σw = 0.01 

 

The following three figures present: 

• The normalized standard deviation of ˆ( )jfσ , i.e. ˆ( ) /j wf Kσ σ , for each of the 

parameter indices 1,2, , pj n= … as a function of K  where both the horizontal and 
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vertical axes are presented in a logarithmic scale, and with assumed values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ .  

The three figures present the results for three different scales of the horizontal 

axis, representing the axis for the K values. 

 
For wσ  = 0.01  and K = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000}: 

D.1 (PLS-S with SRS) and sigma_w = 0.01
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Figure 30. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for σw = 0.01  and K = {4, 6, 8, 9, 10, 25, 50, 100, 
500, 1000}. 
 

 

Similar, though on a smaller horizontal axis, i.e. wσ  = 0.01  and K = {2, 4, 6, 8, 9, 10, 

11, 20, 35, 100}: 

 

D.1 (PLS-S with SRS) and sigma_w = 0.01
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Figure 31. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for σw = 0.01  and K = {2, 4, 6, 8, 9, 10, 11, 20, 
35, 100}. 
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Similar, though on a larger horizontal axis, i.e. for wσ  = 0.01  and K = {100, 300, 600, 

800, 1000, 3000, 5000, 10000, 30000, 50000}: 
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Figure 32. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for σw = 0.01  and K = {100, 300, 600, 800, 1000, 
3000, 5000, 10000, 30000, 50000}. 
 

 

Discussion of results for small value wσ  = 0.01  

The simulations for algorithm D.1 (PLS-S with SRS) with wσ  = 0.01 show that:  

• For 2 ≤  K ≤ 8 (i.e. K ≤ np), the values of   ˆ( ) /j wf Kσ σ are within the range of 

180-780. 

• For K = 9 (i.e. K = np+1), the values of  ˆ( ) /j wf Kσ σ  variy from from 23 to very 

high (in the figure above the maximum is around  1.8 · 103, though other 

simulations show that it can even be around 3.2 ·104).  

• For K > 9 (i.e. K > np+1), the values of  ˆ( ) /j wf Kσ σ  do not really converge, 

although the range in which they fall is small, i.e. all fall within the range 2.2-3.1.  
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7.1.2 Variation of K and fixed high value of σw 

Consider algorithm D.1, i.e. PLS-S with SRS, for a fixed value of the standard 
deviation wσ  and with variation of K , as specified in the following table: 

 

Algorithm Values for K Values for σw 

D.1 (PLS-S with SRS) K = {4, 6, 8, 9, 10, 25, 50, 100, 

500, 1000} 

σw = 0.5 

D.1 (PLS-S with SRS) K = {2, 4, 6, 8, 9, 10, 11, 20, 35, 

100} 

σw = 0.5 

D.1 (PLS-S with SRS) K = {100, 300, 600, 800, 1000, 

3000, 5000, 10000, 30000, 50000} 

σw = 0.5 

 

The following three figures present: 

• The normalized standard deviation of ˆ( )jfσ , i.e. ˆ( ) /j wf Kσ σ , for each of the 

parameter indices 1,2, , pj n= … as a function of K  where both the horizontal and 

vertical axes are presented in a logarithmic scale, and with assumed values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ .  

The three figures present the results for three different scales of the horizontal 

axis, representing the axis for the K values. 

 

 
For wσ  = 0.5 and K = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000}:  

D.1 (PLS-S with SRS) and sigma_w = 0.5
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Figure 33. Normalized standard deviation ˆ( ) /j wf Kσ σ for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for σw = 0.5  and K = {4, 6, 8, 9, 10, 25, 50, 100, 

500, 1000}. 
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Similar, though on a smaller horizontal axis, i.e. for wσ  = 0.5 and K = {2, 4, 6, 8, 9, 

10, 11, 20, 35, 100}: 
 

D.1 (PLS-S with SRS) and sigma_w = 0.5
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Figure 34. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,Np with 

algorithm D.1 (PLS-S with SRS) for σw = 0.5  and K = {2, 4, 6, 8, 9, 10, 11, 20, 35, 
100}. 
 

Similar, though on a larger horizontal axis, i.e. for wσ  = 0.5 and K = {100, 300, 600, 

800, 1000, 3000, 5000, 10000, 30000, 50000}: 
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1.0E+00

1.0E+01

1.0E+02

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05

K   (Log scale)

sg
m

_f
*s

q
rt

(K
)/

sg
m

_w
 (

L
o

g
 

sc
al

e)

m1=0.1

m2=0.2

m3=0.4

m4=0.8

m5=1.6

m6=3.2

m7=6.4

m8=12.8

 

Figure 35. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for σw = 0.5  and K = {100, 300, 600, 800, 1000, 

3000, 5000, 10000, 30000, 50000}. 
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Discussion of results for high value wσ  = 0.5  

The simulations for algorithm D.1 (PLS-S with SRS) with wσ  = 0.5 show that:  

• For 2 ≤  K  ≤ 8 (i.e. K ≤ np), the values of  ˆ( ) /j wf Kσ σ  are within the range of 

4-33. 

• For K  = 9 (i.e. K  = np+1), the values of  ˆ( ) /j wf Kσ σ  varies from from 17 to 

very high (in the figure above the maximum is around 1.8 · 103).  

• For K  > 9 (i.e. K  > np+1), the values of  ˆ( ) /j wf Kσ σ  do not really converge to 

some fixed number, but instead converge to a range and within this range they 

can vary, the range is 2.0-2.9.  
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7.1.3 Variation of K and fixed very high value of σw 

Consider algorithm D.1, i.e. PLS-S with SRS, for a fixed value of the standard 
deviation wσ  and with variation of K , as specified in the following table: 

 

Algorithm Values for K Values for σw 

D.1 (PLS-S with SRS) K = {4, 6, 8, 9, 10, 25, 50, 100, 

500, 1000} 

σw = 10 

D.1 (PLS-S with SRS) K = {2, 4, 6, 8, 9, 10, 11, 20, 35, 

100} 

σw = 10 

D.1 (PLS-S with SRS) K = {100, 300, 600, 800, 1000, 

3000, 5000, 10000, 30000, 50000} 

σw = 10 

 

The following three figures present: 

• The normalized standard deviation of ˆ( )jfσ , i.e. ˆ( ) /j wf Kσ σ , for each of the 

parameter indices 1,2, , pj n= … as a function of K  where both the horizontal and 

vertical axes are presented in a logarithmic scale, and with assumed values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ .  

The three figures present the results for three different scales of the horizontal 

axis, representing the axis for the K values. 
 

For wσ  = 10 and K = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000}:  

D.1 (PLS-S with SRS) and sigma_w = 10
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Figure 36. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for σw = 10  and K = {4, 6, 8, 9, 10, 25, 50, 100, 

500, 1000}. 
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Similar, though on a smaller horizontal axis, i.e. for wσ  = 10  and K = {2, 4, 6, 8, 9, 

10, 11, 20, 35, 100}: 

D.1 (PLS-S with SRS) and sigma_w = 10
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Figure 37. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for σw = 10  and K = {2, 4, 6, 8, 9, 10, 11, 35, 
100}. 
 

Similar, though on a larger horizontal axis, i.e. for wσ  = 10 and K = {100, 300, 600, 

800, 1000, 3000, 5000, 10000, 30000, 50000}: 

D.1 (PLS-S with SRS) and sigma_w = 10
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Figure 38. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for σw = 10  and K = {100, 300, 600, 800, 1000, 

3000, 5000, 10000, 30000, 50000}. 
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Discussion of results for very high value wσ  = 10  

The simulations for algorithm D.1 (PLS-S with SRS) with wσ  = 20 show that:  

• For 2 ≤  K ≤ 8 (i.e. K  ≤ np), the values of  ˆ( ) /j wf Kσ σ  are within the range of 

0.4-20. 

• For K = 9 (i.e. K = np+1), the values of  ˆ( ) /j wf Kσ σ  varies from from 17 to 

very high (in the figure above the maximum is around 7.7 · 103).  

• For K > 9 (i.e. K > np+1), the values of  ˆ( ) /j wf Kσ σ  do not really converge to 

some fixed number, but instead converge to a range and within this range they 

can vary, the range is 2.0-3.0.  
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7.2 PLS-S Algorithm D.1 and variation of σw 

Results for algorithm D.1, i.e. PLS-S with SRS, for fixed value of K  and with 
variation of the standard deviation wσ , are presented in the two subsections hereafter 

for 1pK n≥ +  and for pK n<  respectively.  

 

This subsection is organised as follows: 
• In Subsection 7.2.1, we vary standard deviation wσ  for a fixed K . 

• In Subsection 7.2.2, we vary standard deviation wσ  for a fixed low value of K .  

For an overall discussion about the effects of both the standard deviation wσ  and the 

number of samples K on PLS-S algorithm D.1 the reader is referred to Subsection 7.3. 

 

 

7.2.1 Variation of σw and fixed value K ≥ np+1 

Consider algorithm D.1, i.e. PLS-S with SRS, for a fixed value of K and with 
variation of the standard deviation wσ , as specified in the following table: 

 

Algorithm Values for K Values for σw 

D.1 (PLS-S with SRS) K = 9 wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 

1000 } 

D.1 (PLS-S with SRS) K = 10 wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 

1000 } 

D.1 (PLS-S with SRS) K = 11 wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 

1000 } 

D.1 (PLS-S with SRS) K = 12 wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 

1000 } 

D.1 (PLS-S with SRS) K = 32 wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 

1000 } 

D.1 (PLS-S with SRS) K = 1000 wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 

1000 } 

 

The following figures present: 

• The normalized standard deviation of ˆ( )jfσ , i.e. ˆ( ) /j wf Kσ σ , for fixed values 

of K ≥ np+1 as specified in the above table for each of the parameter indices 
1,2, , pj n= … as a function of wσ  where both the horizontal and vertical axes are 

presented in a logarithmic scale, and with assumed values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ .  
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• For K = 32 two additional figures are presented, i.e. the corresponding standard 

deviation ˆ( )jfσ  for each 1,2, , pj n= …  as a function of wσ  where both the 

horizontal and vertical axes are presented in a logarithmic scale; and the 

corresponding mean ˆ( )jfµ  as a function of the parameter number 1,2, , pj n= … . 

 
For K = 9 and wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 } the values of 

ˆ( ) /j wf Kσ σ  can vary from low to very high (in the figure this is from 2 · 101  to 

2 · 103): 

D.1 (PLS-S with SRS) and K = 9
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Figure 39. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for K = 9 and σw = {0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 
100, 1000 }. 
 

 
For K = 10 and wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 } the values of 

ˆ( ) /j wf Kσ σ  vary from 8.4 to 35.7  in the figure below: 

D.1 (PLS-S with SRS) and K = 10
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Figure 40. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for K = 10 and σw = {0.001, 0.01, 0.1, 1, 2, 4, 8, 

10, 100, 1000 }. 
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For K = 11 and wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 } the values of 
ˆ( ) /j wf Kσ σ  vary between 5-19: 

D.1 (PLS-S with SRS) and K = 11
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Figure 41. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for K = 11 and σw = {0.001, 0.01, 0.1, 1, 2, 4, 8, 

10, 100, 1000 }. 

 

 
For K = 12 and wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 } the values of 

ˆ( ) /j wf Kσ σ  vary between 4.1-11.5: 

 

D.1 (PLS-S with SRS) and K = 12
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Figure 42. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for K = 12 and σw = {0.001, 0.01, 0.1, 1, 2, 4, 8, 

10, 100, 1000 }. 
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For K = 32 and wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 } the values of 
ˆ( ) /j wf Kσ σ  vary between 2.4-3.6: 

D.1 (PLS-S with SRS) and K = 32
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Figure 43. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for K = 32 and σw = {0.001, 0.01, 0.1, 1, 2, 4, 8, 

10, 100, 1000 }. 

 

and corresponding standard deviation ̂( )jfσ  is 

D.1 (PLS-S with SRS) and K = 32 
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Figure 44. Standard deviation ˆ( )jfσ for  j = 1,2,...,np with algorithm D.1 (PLS-S 

with SRS) for K = 32 and σw = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 }. 
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and corresponding mean ˆ( )jfµ  is  

D.1 (PLS-S with SRS) and K = 32 
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Figure 45. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm D.1 

(PLS-S with SRS) for K = 32 and σw = {0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100}. The 
red line indicated as ‘Real fj’ represents the true values for jf . 

 

Note that in Figure 45 the mean ˆ( )jfµ  values for wσ  = 1000 are not shown since they 

are very inaccurate and the figure would become unreadable. 
 
For K = 1000 and wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 } the values of 

ˆ( ) /j wf Kσ σ  vary between 2.1 -2.9:  

D.1 (PLS-S with SRS) and K = 1000
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Figure 46. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for K = 1000 and σw = {0.001, 0.01, 0.1, 1, 2, 4, 8, 

10, 100, 1000 }. 
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7.2.2 Variation of σw and low value K = 6 (< np) 

Consider algorithm D.1, i.e. PLS-S with SRS, for a fixed value of K and with 
variation of the standard deviation wσ , as specified in the following table: 

 

Algorithm Values for K Values for σw 

D.1 (PLS-S with SRS) K = 6 wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 

1000 } 

D.1 (PLS-S with SRS) K = 6 wσ  = { 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 

100 } 

D.1 (PLS-S with SRS) K = 6 wσ  = { 0.001, 0.002, 0.005, 0.01, 0.02, 

0.05, 0.1, 0.2, 0.5, 1 } 

 

For each of these three cases, two figures are presented below: 

• The normalized standard deviation of ˆ( )jfσ , i.e. ˆ( ) /j wf Kσ σ , for K = 6  for 

each of the parameter indices 1,2, , pj n= … as a function of wσ  where both the 

horizontal and vertical axes are presented in a logarithmic scale, and with assumed 

values for  

( ) ( )1 2 8 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8f f f =⋯ .  

• The corresponding standard deviation ̂( )jfσ  for each 1,2, , pj n= …  as a function 

of wσ  where both the horizontal and vertical axes are presented in a logarithmic 

scale. 
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For  K = 6 and wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 }: 

 

D.1 (PLS-S with SRS) and K = 6
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Figure 47. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for K = 6 and σw = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 

10, 100, 1000 }. 

 

and corresponding figure for standard deviations of ˆ( )jfσ   is 

 

D.1 (PLS-S with SRS) and K = 6
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Figure 48. Standard deviation ˆ( )jfσ  for  j = 1,2,...,np with algorithm D.1 (PLS-S 

with SRS) for K = 6 and σw = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 }. 
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Similar, though on a smaller horizontal axis, i.e. for K = 6 and wσ  = { 0.1, 0.2, 0.5, 1, 

2, 5, 10, 20, 50, 100 }: 

D.1 (PLS-S with SRS) and K = 6
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Figure 49. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for K = 6 and σw = { 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 

50, 100 }. 

 

and corresponding figure for standard deviations of ˆ( )jfσ   is 

 

D.1 (PLS-S with SRS) and K = 6
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Figure 50. Standard deviation ˆ( )jfσ  for  j = 1,2,...,Np with algorithm D.1 (PLS-S 

with SRS) for K = 6 and σw = { 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100 }. 
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Similar, though for wσ  ≤ 1, i.e. for wσ  = { 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 

0.2, 0.5, 1 } 

 

D.1 (PLS-S with SRS) and K = 6
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Figure 51. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm D.1 (PLS-S with SRS) for K = 6 and σw = { 0.001, 0.002, 0.005, 0.01, 

0.02, 0.05, 0.1, 0.2, 0.5, 1 }. 

 

and corresponding figure for standard deviations of ˆ( )jfσ  is 

D.1 (PLS-S with SRS) and K = 6
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Figure 52. Standard deviation ˆ( )jfσ  for  j = 1,2,...,np with algorithm D.1 (PLS-S 

with SRS) for K = 6 and σw = { 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}. 
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Discussion of results for K = 6 

The simulations for algorithm D.1 (PLS-S with SRS) with K = 6, the results show 

that:  

• For wσ  ≤ 1, the obtained values for the standard deviations of ˆ( )jfσ  all fall 

within the range 2.1-3.2 (see Figure 52), and the obtained values for 
ˆ( ) /j wf Kσ σ  increase with decreasing wσ  (see Figure 51).  

• It turns out that for wσ  getting smaller, ˆ( ) /j wf Kσ σ  becomes extremely high. 

This can be explained by a division by wσ  for 0wσ →  with K = 6 and finite 

values for ˆ( )jfσ , which implies that ˆ( ) /j wf Kσ σ → ∞ . 

• For wσ  >  10, the values for ˆ( ) /j wf Kσ σ  do not really converge to some fixed 

number, but instead converge to a range and within this range they can vary, the 

range is 2.3-4.2 (See Figure 47 and Figure 49). 
 

7.3 Discussion of results obtained 
The effect of standard deviation wσ  and number of samples K  on the normalized 

standard deviation ˆ( ) / wF Kσ σ  where ( )1 2 p

T
nF f f f= ⋯ , has been analysed 

for PLS-S Algorithm D.1. 

 

The main findings are:  
• For K large enough and such that 1pK n> + , the Monte Carlo simulations 

showed that the standard deviations ̂( )jfσ  for all 1,2, , pj n= …  are proportional 

to standard deviation wσ  and inversely proportional to the square root of K. The 

values of ˆ( ) /j wf Kσ σ  for K large enough all fall within some ‘converging area’ 

(i.e. for K = 1000, the range is 2.1-2.9), though within this area there is no 

convergence; the ‘converging area’ is independent of the value of standard 
deviation wσ . Only in case wσ  has extremely high values (e.g. wσ  = 100 and 

wσ  = 1000 in Figure 45), the mean ˆ( )jfµ  becomes inaccurate.  

• For 1pK n= + , the values for ˆ( ) /j wf Kσ σ  can become rather high (i.e. more 

than 103) and this is independent of the value of wσ , although for higher values 

of wσ  this effect occurred more often. Similarly, for 2pK n= + , the values for 

ˆ( ) /j wf Kσ σ  can also become rather high, though this occurred less often 

compared to 1pK n= + . 

• For pK n≤ , it turned out that the smaller K is, the more inaccurate the obtained 

values for the mean ˆ( )jfµ for 1,2, , pj n= …  become when compared to the true 
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values of jf . Considering values of wσ  for pK n≤ , it turns out that there is a 

difference between small values of wσ  (say smaller than 1) or larger values of 

values of wσ  (say larger than 10):  

For small values of wσ , i.e. for wσ  ≤ 1:  

- the obtained values for the standard deviations ˆ( )jfσ  for 1,2, , pj n= …  for the 

case that pK n≤  all fall within a low range (e.g. for K = 6, the range is 2.1-

3.2), and  

- the obtained values for ˆ( ) /j wf Kσ σ  increase with decreasing wσ . The 

smaller wσ  becomes for K = 6, it turns out that ˆ( ) /j wf Kσ σ  becomes 

extremely high.  
For large values of wσ ,  i.e. for wσ  > 10: 

- the obtained values for values for ˆ( ) /j wf Kσ σ  do not really converge to 

some fixed number, but instead converge to a range and within this range they 

can vary, for example for K = 6, the range is is 2.3-4.2.  
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8 Effect of large value for np  
In this section, the effect of a large value for the number of parameters np will be 

analysed for PLS-S with sampling type SRS (i.e. Algorithm D.1) and how it relates to 

LS-MP with sampling type SRS (i.e. Algorithm B.1).   

In this section it is assumed that the number of parameters np  = 200, for this value the 

following is discussed: 

• Results for Algorithms B.1 versus D.1 with variation of K  in Subsection 8.1. 
• Results for Algorithms B.1 versus D.1 with variation of standard deviation wσ  in 

Subsection 8.2. 

• A summarising discussion is given in Subsection 8.3. 

 

8.1 Algorithm B.1 (LS-MP) vs. Algorithm D.1 (PLS-S) and variation of K 

Results for algorithms B.1 (LS-MP with SRS) and D.1 (PLS-S with SRS) with 
200pn = , for fixed value of the standard deviation wσ  (i.e. 0.5wσ = ) and with 

variation of K , are presented in the subsection hereafter. 

 

8.1.1 Variation of K and fixed value of σw (=0.5) 

Consider algorithms B.1 and D.1, for a fixed value of the standard deviation wσ  and 

with variation of K , as specified in the following table: 

 

Algorithm Values for K Values for σw 

B.1 (LS-MP wirh SRS) 

D.1 (PLS-S with SRS) 

K = {10, 20, 40, 50, 100, 160, 175, 

200, 250, 500}  

σw = 0.5 

B.1 (LS-MP wirh SRS) 

D.1 (PLS-S with SRS) 

K = {150, 160, 170, 180, 190, 200, 

201, 220, 500, 1000} 

σw = 0.5 

 

The following three figures present the normalized standard deviation of ˆ( )jfσ , i.e. 

ˆ( ) /j wf Kσ σ , as a function of K  where both the horizontal and vertical axes are 

presented in a logarithmic scale,  

• for Algorithm B.1 for a selection of parameter indices, i.e. for  
 1,27,53,79,105,131,157,183, ( 200)pj n= =  and with assumed values for  jf  

( ) ( )1 27 53 200 0.1 1.7 3.2 4.8 6.3 7.9 9.4 11 12f f f f =⋯ ; 

for Algorithm D.1 for the same selection of parameter indices and the assumed 
values for  jf ; 

• for Algorithms B.1 and D.1 for parameter index 200pj n= = .  
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For wσ  = 0.5  and  K = {10, 20, 40, 50, 100, 160, 175, 200, 250, 500}: 

B.1 (CL-MP w ith SRS)
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Figure 53. Normalized standard deviation ˆ( ) /j wf Kσ σ  for ( f1  f27  f53  ...  f200 ) = 

(0.1  1.7  3.2  4.8  6.3  7.9  9.4  11  12) with algorithm B.1 (LS-MP with SRS) for 
σw = 0.5  and K = {10, 20, 40, 50, 100, 160, 175, 200, 250, 500}. 

D.1 (PLS-S with SRS)
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Figure 54. Normalized standard deviation ˆ( ) /j wf Kσ σ  for ( f1  f27  f53  ...  f200 ) = 

(0.1  1.7  3.2  4.8  6.3  7.9  9.4  11  12)  with algorithm D.1 (PLS-S with SRS) for 
σw = 0.5  and K = {10, 20, 40, 50, 100, 160, 175, 200, 250, 500}. 
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B.1 (CL-MP w ith SRS) & D.1 (PLS-S w ith SRS)
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Figure 55. Normalized standard deviation ˆ( ) /j wf Kσ σ  for parameter f200  = 

12.0 with algorithms B.1 and D.1  for σw = 0.5  and K = {10, 20, 40, 50, 100, 160, 
175, 200, 250, 500}. 
 

 

These three figures (Figure 53-Figure 55) show that for K =  50, 100 and 160 the 

values for the normalized standard deviation ̂( ) /j wf Kσ σ  for algorithm D.1 deviates 

from those for algorithm B.1 (e.g for K = 100, the normalized standard deviation 

ˆ( ) /j wf Kσ σ  for B.1 is 1.9, whereas for D.1 this is 17.0). This deviation between B.1 

and D.1 occurs for some values for which  K  < np, though not for all as it does not 

occur for the lowest values K =  10 and 20, and for high values K =  175 and larger. 

For all values K ≥ 175, both algorithms B.1 and D.1 give the same numerical results 

(i.e. numerical differences for K = 175 <  np are in the order of 10-5 or smaller; 

numerical differences for K = 200, 250, 500 (i.e. values for which K ≥ np) are in the 

order of 10-10 or smaller).   
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The following figure presents: 

• The mean ˆ( )jfµ  as a function of the parameter index 1,27,53, , ( 200)pj n= =…  

for each of the values of K  as specified in the above table, i.e. K = {10, 20, 40, 

50, 100, 160, 175, 200, 250, 500} and the true values for  

( ) ( )1 27 53 200 0.1 1.7 3.2 4.8 6.3 7.9 9.4 11 12f f f f =⋯ . 

B.1 (CL-MP with SRS)
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Figure 56. Mean ˆ( )jfµ  values as a function of j = 1,27,53,...,np (=200) with 

algorithm B.1 (LS-MP with SRS) for σw = 0.5 and K = {10, 20, 40, 50, 100, 160, 
175, 200, 250, 500}. The red line indicated as ‘Real fj’ represents the true values 
for jf . 

D.1 (PLS-S w ith SRS)
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Figure 57. Mean ˆ( )jfµ  values as a function of j = 1,27,53,...,np (=200) with 

algorithm D.1 (PLS-S with SRS) for σw = 0.5 and K = {10, 20, 40, 175, 200, 250, 
500}. The red line indicated as ‘Real fj’ represents the true values for jf . 
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Figure 57 does not include the mean ˆ( )jfµ  values for K = {50, 100, 160} with 

algorihtm D.1 as their absolute values become extremely large, i.e. they vary between 

-6 · 10+14 and +8 · 10+14. This also explains that for K = {50, 100, 160} the normalized 

standard deviation ˆ( ) /j wf Kσ σ  with algorithm D.1 deviates from those of algorithm 

B.1. 

 

Similar, though with other values for the horizontal axis, i.e. for K = {150, 160, 170, 

180, 190, 200, 201, 220, 500, 1000}, i.e. including K = np and K = np + 1, and again 

with wσ  = 0.5: 

B.1 (CL-MP w ith SRS)
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Figure 58. Normalized standard deviation ˆ( ) /j wf Kσ σ  for ( f1  f27  f53  ...  f200 ) = 

(0.1  1.7  3.2  4.8  6.3  7.9  9.4  11  12) with algorithm B.1 (LS-MP with SRS) for 

σw = 0.5  and K = {150, 160, 170, 180, 190, 200 (=np), 201, 220, 500, 1000}. 
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D.1 (PLS-S with SRS)
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Figure 59. Normalized standard deviation ˆ( ) /j wf Kσ σ  for ( f1  f27  f53  ...  f200 ) = 

(0.1  1.7  3.2  4.8  6.3  7.9  9.4  11  12) with algorithm D.1 (PLS-S with SRS) for σw 

= 0.5  and K = {150, 160, 170, 180, 190, 200 (=np), 201, 220, 500, 1000}. 

 

 

B.1 (CL-MP with SRS) & D.1 (PLS-S with SRS)
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Figure 60. Normalized standard deviation ˆ( ) /j wf Kσ σ  for parameter f200  = 

12.0 with algorithms B.1 and D.1  for σw = 0.5  and K = {150, 160, 170, 180, 190, 
200 (=np), 201, 220, 500, 1000}. 
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B.1 (CL-MP with SRS)
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Figure 61. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm B.1 

(LS-MP with SRS) for σw = 0.5 and K = {150, 160, 170, 180, 190, 200 (=np), 201, 
220, 500, 1000}. The red line indicated as ‘Real fj’ represents the true values for 

jf . 

 

 

These figures (see Figure 59 and Figure 60) show that for K = 150 and 160 the values 

for the normalized standard deviation ˆ( ) /j wf Kσ σ  for algorithm D.1 deviates from 

those for algorithm B.1. Related to this also the mean ˆ( )jfµ  values for K = 150 and 

160 with algorihtm D.1 are extremely large in absolute sense (i.e. for K = 150 they 

vary between between -8 · 10+9 and 5 · 10+9 , and for K = 160 they vary between 

between -6 · 10+3 and 4 · 10+3). 

 

For all values K ≥ 180, both algorithms B.1 and D.1 give the same numerical results 

(i.e. numerical differences for K = 201 are in the order of 10-7 or smaller, and for all 

other values K ≥ 180, numerical differences are in the order of 10-10 or smaller).   

 

For K = np + 1 (= 201), there is a peak in the normalized standard deviation 

ˆ( ) /j wf Kσ σ , both for algorithms B.1 and D.1; in addition there are inaccuracies in 

the corresponding mean ˆ( )jfµ  (see Figure 61). Therefore this case is further analysed 

in Subsection 8.2.2 for different values of standard deviation wσ . 
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Discussion of results for pn  = 200 and wσ  = 0.5  

The simulations for algorithms B.1 (LS-MP with SRS) and D.1 (PLS-S with SRS) 

with 200pn =  and wσ  = 0.5 show that:  

• For K =  40, 50, ..., 160, 170, the values for the normalized standard deviation 

ˆ( ) /j wf Kσ σ  for algorithm D.1 deviates from those for algorithm B.1, and the 

corresponding mean ˆ( )jfµ  algorithm D.1 becomes inaccurate compared to 

algorithm B.1. For K =  40 and K =  170, the deviations are still small, but not for 

the other values in this interval. For example for K = 100, with algorithm D.1 the 

normalised standard deviations fall within the range 16.8-17.0, which 

corresponds to very high values of the standard deviation ˆ( )jfσ , i.e. in the order 

of 10+15, and with very inaccurate mean ˆ( )jfµ   in the order of 10+14; whereas 

with algorithm B.1 the normalised standard deviations fall within the range 1.8-

1.9 and the standard deviation ˆ( )jfσ  fall within the range 3.0-3.8.  

• For K = 10, 20 and for all K ≥ 175, both algorithms give the same numerical 

results. (i.e. numerical differences for K = 175 are in the order of 10-5 or smaller; 

numerical differences for K ≥ np = 200 are in the order of 10-10 or smaller). The 

values of ˆ( ) /j wf Kσ σ  do not really converge to some fixed number, but instead 

converge to a range and within this range they can vary, the range is 0.3-0.5. 

• For 10 ≤  K  ≤  200 (i.e. K ≤ np), the values of  ˆ( ) /j wf Kσ σ  with algorithm B.1 

are within the range of 0.9 - 1.9.  

• For K  = 201 (i.e. K  = np+1), both algorithms B.1 and D.1 give the same 

numerical results; though the values of  ̂( ) /j wf Kσ σ  show a peak, with values 

between 2.5 to 3.3, whereas for K  = 200 and K  >  201 the values of 

ˆ( ) /j wf Kσ σ  are smaller (than 1.9).  
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8.2 Algorithm B.1 (LS-MP) vs. Algorithm D.1 (PLS-S) and variation of σw  

 

Results for algorithms B.1 (LS-MP with SRS) and D.1 (PLS-S with SRS) with 
200pn = , for fixed value of K  and with variation of the standard deviation wσ , are 

presented in the three subsections hereafter for three different values of K such that 
1pK n> + , 1pK n= +  and pK n< .  

 

This subsection is organised as follows: 
• In Subsection 8.2.1, we vary standard deviation wσ  for K = 250 (> np+1) 

• In Subsection 8.2.2, we vary standard deviation wσ  for K = 201 (= np+1) 

• In Subsection 8.2.3, we vary standard deviation wσ  for K = 195 (< np) 

For an overall discussion about the effects of both the standard deviation wσ  and the 

number of samples K on PLS-S algorithm D.1 the reader is referred to Subsection 8.3. 

 

8.2.1 Variation of σw and fixed value K = 250 (> np+1) 

Consider algorithms B.1 and D.1, for a fixed value of K and with variation of the 
standard deviation wσ , as specified in the following table: 

 

Algorithm Values for K Values for σw 

B.1 (LS-MP wirh SRS) 

D.1 (PLS-S with SRS) 

K = 250  wσ  = { 0.001, 0.01, 0.1, 0.2, 0.4,0.8, 1, 2, 

5, 10 } 

 

The following figures present: 

• The normalized standard deviation of ˆ( )jfσ , i.e. ˆ( ) /j wf Kσ σ , for fixed value of 

K = 250 > np+1 as specified in the above table for parameter indices 
1,27,53,79,105,131,157,183, ( 200)pj n= = as a function of wσ  where both the 

horizontal and vertical axes are presented in a logarithmic scale, and with assumed 
values for jf   

( ) ( )1 27 53 200 0.1 1.7 3.2 4.8 6.3 7.9 9.4 11 12f f f f =⋯ ; 

• The corresponding standard deviation ̂( )jfσ  as a function of wσ  where both the 

horizontal and vertical axes are presented in a logarithmic scale. 

• The corresponding mean ˆ( )jfµ  as a function of the parameter number 

1,27,53,79,105,131,157,183, ( 200)pj n= = . 

As it turned out that both algorithms B.1 and D.1 give numericaly the same results, 

the results are only presented for algorithm B.1 (LS-MP with SRS). 
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For K = 250 and wσ  = { 0.001, 0.01, 0.1, 0.2, 0.4,0.8, 1, 2, 5, 10 }the values of 
ˆ( ) /j wf Kσ σ  vary between 4.3-6.7 

B.1 (CL-MP with SRS) and K = 250
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Figure 62. Normalized standard deviation ˆ( ) /j wf Kσ σ  for ( f1  f27  f53  ...  f200 ) = 

(0.1  1.7  3.2  4.8  6.3  7.9  9.4  11  12)  with algorithm B.1 (LS-MP with SRS) for 

K = 250 and σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10 }. 

 

and corresponding standard deviation ̂( )jfσ  is 

B.1 (CL-MP with SRS) and K = 250

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01

sigma_w (Log scale)

st
d

 d
ev

 (
es

t 
f_

j)
 (

L
o

g
sc

al
e) f1=0.1

f27=1.7

f53=3.2

f79=4.8

f105=6.3

f131=7.9

f157=9.4

f183=11.0

f200=12.0

sgm_w /sqrt(K)

 

Figure 63. Standard deviation ˆ( )jfσ for  ( f1  f27  f53  ...  f200 ) = (0.1  1.7  3.2  4.8  6.3  

7.9  9.4  11  12) with algorithm B.1 (LS-MP with SRS) for K = 250 and σw = 

{0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10 }. 
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and corresponding mean ˆ( )jfµ  is  

 

B.1 (CL-MP with SRS) w ith K = 250
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Figure 64. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm B.1 

(LS-MP with SRS) for K = 250 and σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10 }. 
The red line indicated as ‘Real fj’ represents the true values for jf . 
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8.2.2 Variation of σw and fixed value K = 201 (= np+1) 

Consider algorithms B.1 and D.1, for a fixed value of K and with variation of the 
standard deviation wσ , as specified in the following table: 

 

Algorithm Values for K Values for σw 

B.1 (LS-MP wirh SRS) 

D.1 (PLS-S with SRS) 

K = 201 wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 

100, 1000 } 

 

The following figures present: 

• The normalized standard deviation of ˆ( )jfσ , i.e. ˆ( ) /j wf Kσ σ , for fixed value of 

K = 201 = np + 1 as specified in the above table for parameter indices 
1,27,53,79,105,131,157,183, ( 200)pj n= = as a function of wσ  where both the 

horizontal and vertical axes are presented in a logarithmic scale, and with assumed 
values for jf   

( ) ( )1 27 53 200 0.1 1.7 3.2 4.8 6.3 7.9 9.4 11 12f f f f =⋯ ; 

• The corresponding standard deviation ̂( )jfσ  as a function of wσ  where both the 

horizontal and vertical axes are presented in a logarithmic scale. 

• The corresponding mean ˆ( )jfµ  as a function of the parameter number 

1,27,53,79,105,131,157,183, ( 200)pj n= = . 

As it turned out that both algorithms B.1 and D.1 give numericaly the same results, 

the results are only presented for algorithm B.1 (LS-MP with SRS). 
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For K = 201 and wσ  = { 0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 } the values of 
ˆ( ) /j wf Kσ σ  can vary from low to very high (in the figure this is from 9.2 · 101  to 

1.1 · 104): 

B.1 (CL-MP with SRS) and K = 201
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Figure 65. Normalized standard deviation ˆ( ) /j wf Kσ σ  for ( f1  f27  f53  ...  f200 ) = 

(0.1  1.7  3.2  4.8  6.3  7.9  9.4  11  12)  with algorithm B.1 (LS-MP with SRS) for 

K = 201 and σw = {0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 }. 

 

and corresponding standard deviation ̂( )jfσ  is 

B.1 (CL-MP with SRS) and K = 201
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Figure 66. Standard deviation ˆ( )jfσ for  ( f1  f27  f53  ...  f200 ) = (0.1  1.7  3.2  4.8  6.3  

7.9  9.4  11  12) with algorithm B.1 (LS-MP with SRS) for K = 201 and σw = 

{0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100, 1000 }. 
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8.2.3 Variation of σw and fixed value K =195 (< np) 

Consider algorithms B.1 and D.1, for a fixed value of K and with variation of the 
standard deviation wσ , as specified in the following table: 

 

Algorithm Values for K Values for σw 

B.1 (LS-MP wirh SRS) 

D.1 (PLS-S with SRS) 

K = 195 wσ  = { 0.001, 0.01, 0.1, 0.2, 0.4,0.8, 1, 2, 

5, 10 } 

 

The following figures present: 

• The normalized standard deviation of ˆ( )jfσ , i.e. ˆ( ) /j wf Kσ σ , for fixed value of 

K = 195 < np as specified in the above table for parameter indices 
1,27,53,79,105,131,157,183, ( 200)pj n= = as a function of wσ  where both the 

horizontal and vertical axes are presented in a logarithmic scale, and with assumed 
values for jf   

( ) ( )1 27 53 200 0.1 1.7 3.2 4.8 6.3 7.9 9.4 11 12f f f f =⋯ ; 

• The corresponding standard deviation ̂( )jfσ  as a function of wσ  where both the 

horizontal and vertical axes are presented in a logarithmic scale. 

• The corresponding mean ˆ( )jfµ  as a function of the parameter number 

1,27,53,79,105,131,157,183, ( 200)pj n= = . 

As it turned out that both algorithms B.1 and D.1 give numericaly the same results, 

the results are only presented for algorithm B.1 (LS-MP with SRS). 

 



iFly 6th Framework programme Deliverable D7.2f 

 

22 March 2011 TREN/07/FP6AE/S07.71574/037180 IFLY Page 109/144 

 

For K = 195 and wσ  = { 0.001, 0.01, 0.1, 0.2, 0.4,0.8, 1, 2, 5, 10 }: 

B.1 (CL-MP w ith SRS) with K = 195
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Figure 67. Normalized standard deviation ˆ( ) /j wf Kσ σ  for ( f1  f27  f53  ...  f200 ) = 

(0.1  1.7  3.2  4.8  6.3  7.9  9.4  11  12)  with algorithm B.1 (LS-MP with SRS) for 

K = 195 and σw = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10 }. 

 

and corresponding standard deviation ̂( )jfσ  is 

B.1 (CL-MP with SRS)
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Figure 68. Standard deviation ˆ( )jfσ for  ( f1  f27  f53  ...  f200 ) = (0.1  1.7  3.2  4.8  6.3  

7.9  9.4  11  12) with algorithm B.1 (LS-MP with SRS) for K = 195 and σw = 

{0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10 }. 
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and corresponding mean ˆ( )jfµ  is 
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Figure 69. Mean ˆ( )jfµ for  ( f1  f27  f53  ...  f200 ) = (0.1  1.7  3.2  4.8  6.3  7.9  9.4  11  

12) with algorithm B.1 (LS-MP with SRS) for K = 195 and σw = {0.001, 0.01, 0.1, 

0.2, 0.4, 0.8, 1, 2, 5, 10 }. 

 
Discussion of results for K = 195 

The results of the simulations with K = 195 show that:  

• For wσ  ≤ 1, the obtained values for the standard deviations of ˆ( )jfσ  all fall 

within the range 1.0-1.7 (see Figure 68), and the obtained values for 
ˆ( ) /j wf Kσ σ  increase with decreasing wσ  (see Figure 67).  

• It turns out that for wσ  getting smaller, ˆ( ) /j wf Kσ σ  becomes extremely high. 

This can be explained by a division by wσ  for 0wσ →  with K = 195 and finite 

values for ˆ( )jfσ , which implies that ˆ( ) /j wf Kσ σ → ∞ . 

• For wσ  =  10, the values for ˆ( ) /j wf Kσ σ  do not really converge to some fixed 

number, but instead converge to a range and within this range they can vary, the 

range is 12.6-16.3 (see Figure 67). 
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8.3 Discussion of results obtained for large np  
The effect of standard deviation wσ  and number of samples K on the normalized 

standard deviation ˆ( ) / wF Kσ σ  where ( )1 2 p

T
nF f f f= ⋯  with large value 

200pn = , has been analysed for LS-MP with SRS and PLS-S with SRS. 

 

The main findings are:  
• For pK n≤  and algorithm LS-MP with SRS, it turned out that the smaller K is, 

the more inaccurate the obtained values for the mean ˆ( )jfµ  for 1,2, , pj n= …  

become when compared to the true values of jf .  

• For a subset of K values such that pK n< , the results showed that algorithm LS-

MP with SRS gives better results than algorithm PLS-S with SRS. This is 
illustrated by Figure 55, where for K =  50, ..., 160 and 200pn =  the normalised 

standard deviations are larger for algorithm PLS-S with SRS than for algorithm 

LS-MP with SRS. For example for K = 100, with algorithm PLS-S with SRS the 

normalised standard deviations fall within the range 16.8-17.0, which 

corresponds to very high values of the standard deviation ˆ( )jfσ , i.e. in the order 

of 10+15, whereas with algorithm LS-MP with SRS the standard deviations fall 

within the range 1.8-1.9 and the standard deviation ˆ( )jfσ  fall within the range 

3.0-3.8.  

In addition the obtained values for the mean ̂( )jfµ  for 1,2, , pj n= …  for this set 

of K values (i.e. for K =  50, ..., 160 and 200pn = ) with algorihm PLS-S with 

SRS is very inaccurate when compared to the true values of jf .  

This shows that for such a subset of K values such that pK n<  with large pn , 

algorithm PLS-S with SRS is not suitable.  

• For 175K ≥ , both algorithm LS-MP with SRS and PLS-S with SRS give 

numericaly the same results. 

 

The next main findings apply to both algorithm LS-MP with SRS and algorithm PLS-

S with SRS:  
• For K large enough and such that 1pK n> + , the Monte Carlo simulations 

showed that the standard deviations ̂( )jfσ  for all 1,2, , pj n= …  are proportional 

to standard deviation wσ  and inversely proportional to the square root of K. The 

values of ˆ( ) /j wf Kσ σ  for K large enough all fall within some ‘converging area’ 

(i.e. for K = 250, the range is 4.3-6.7, see Figure 62), though within this area there 

is no convergence; the ‘converging area’ is independent of the value of standard 
deviation wσ . Only in case wσ  has extremely high values (e.g. wσ  = 100 and 
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wσ  = 1000), the mean ˆ( )jfµ  becomes inaccurate. (For wσ  = 10 some smaller 

inaccucaries are shown in Figure 69). 

• For 1pK n= + , the values for ˆ( ) /j wf Kσ σ  can become rather high (i.e. more 

than 104) and this is independent of the value of wσ  (see Figure 65). 

• Considering values of wσ  for 195 pK n= ≤ , it turns out that there is a difference 

between small values of wσ  (say smaller than 1) or larger values of values of wσ  

(say larger than 2):  
For small values of wσ , i.e. for wσ  ≤ 1:  

- the obtained values for the standard deviations ˆ( )jfσ  for 1,2, , pj n= …  for the 

case that 195 pK n= ≤  all fall within a low range (e.g. between 1.0-1.7), and  

- the obtained values for ˆ( ) /j wf Kσ σ  increase with decreasing wσ . The 

smaller wσ  becomes for 195 pK n= ≤ , it turns out that ˆ( ) /j wf Kσ σ  becomes 

extremely high.  
For large values of wσ ,  i.e. for wσ  > 2: 

- the obtained values for values for ˆ( ) /j wf Kσ σ  do not really converge to 

some fixed number, but instead converge to a range and within this range they 
can vary, for example for K = 195 the range is is 12.6-16.3 (for wσ  = 10).  
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9 Concluding remarks 
In this report sensitivity analysis has been considered for IPS based collision risk 

estimation in ATM. The sensitivity estimation problem has been formulated as a 

multi-dimensional linear regression problem which estimates the multi-dimensional 

regression coefficients from IPS obtained input and output data sequences. 

Several algorithms have been applied to the linear version of the sensitivity estimation 

problem. The algorithms are determined by the type of multi-dimensional regression 

method and the type of sampling method. 

• The following types of multi-dimensional regression methods have been 

considered: Classical Least Squares (CLS), Least Squares with Moore-Penrose 

(LS-MP), Partial Least Squares based on NIPALS (PLS-N) and Partial Least 

Squares based on SIMPLS (PLS-S). 

• Two sampling methods have been applied to draw samples for the input 

sequence, i.e. Standard Random Sampling (SRS) and Latin Hypercube Sampling 

(LHS).  

• The output of the model is generated by assuming a random variable noise with 

Gaussian distribution. 

 

It has been investigated which of the algorithms can best be applied to the multi-

dimensional linear regression problem considered for collision risk estimation in 

ATM.  
Based on simulations with a small number of regression components, i.e. with 8pn = , 

it turned out that regarding sampling types SRS and LHS the results show that for all 

values of K, no systematic differences can be observed between results obtained with 

SRS and LHS. Figure 70 for example shows the normalized standard deviation for 

one of the regression parameters for algorithm LS-MP with both sampling types SRS 

and LHS.  
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LS-MP with SRS (black) & LS-MP w ith LHS (red): f1=0.1, sigma_w=0.01   
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Figure 70. Normalized standard deviation ˆ( ) /j wf Kσ σ  for j = 1, i.e. for 

parameter 1f =  0.1, with algorithm LS-MP with SRS and algorithm LS-MP with 
LHS for σw = 0.01 as a function of K = {4, 6, 8, 9, 10, 25, 50, 100, 500, 1000} for np 
= 8 (See also Figure 16). 
 

 

It also has become clear that algorithms with CLS estimation can only be applied if 
the number of samples K  is larger than the number of regression components pn , and 

for this case the simulations show that algorithms with LS-MP, PLS-N and PLS-S all 

give numerically the same results as CLS does. Figure 71 for example shows that LS-
MP and PLS-N with 8pn = give the same results for 9( 1)pK n≥ = + . 

 

LS-MP with SRS (black) & PLS-N with SRS (red): f5=1.6, sigma_w=0.5   
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Figure 71. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 5, i.e. for 

parameter 5f =  1.6, with algorithm LS-MP with SRS and algorithm PLS-N with 
SRS for σw =0.5 as a function of K = {3, 4, 6, 8, 9, 10, 11, 20, 35, 100} for np = 8 
(See also Figure 28).  
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In contrast to CLS, algorithms with LS-MP, PLS-N and PLS-S can also be applied for 
the case that pK n≤ . This is for example shown in Figure 71 where LS-MP and PLS-

N with 8pn =  give different results for 8( )pK n≤ = . Both LS-MP and PLS-S 

algorithms give the same numerical values for the mean ˆ( )jfµ  and normalized 

standard deviation ˆ( ) /j wf Kσ σ  for pK n≤ . The PLS-N algorithm gives different 

values for the mean ˆ( )jfµ  and normalized standard deviation ˆ( ) /j wf Kσ σ  for 

pK n≤  when compared to LS-MP and PLS-S. Though no systematic differences can 

be observed between the results of PLS-N when compared to LS-MP and PLS-S.  

 
As explained above, for a small value of pn , it turned out that for all values of K, 

algorithms with LS-MP and PLS-S both give numerically the same results for the 

mean and standard deviations of the regression coefficient. Figure 72 shows that this 
is not the case for a large value pn  of the number of regression components, for 

example with 200pn =  it turned out that for a subset of K values in pK n< , the 

results showed that the algorithm with LS-MP gives better results than the algorithm 

with PLS-S. In the simulations it turned out that for the subset K = 50, ..., 160 and 
200pn =  the PLS-S with SRS algorithm resulted in very high values of the standard 

deviation ˆ( )jfσ , i.e. even in the order of 10+15, and in very inaccurate values for the 

mean ˆ( )jfµ , whereas the LS-MP with SRS algorithm did not result in such 

inaccuracies. For all other values of K than the above subset, both LS-MP and PLS-S 

give numerically the same results for the mean and standard deviations of the 

regression coefficient.  
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LS-MP with SRS (red)   &   PLS-S with SRS (black)
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Figure 72. Normalized standard deviation ˆ( ) /j wf Kσ σ  for parameter f200  = 

12.0 with algorithm LS-MP with SRS and algorithm PLS-S with SRS for σw = 0.5  
and K = {10, 20, 40, 50, 100, 160, 175, 200, 250, 500} for np = 200 (See also Figure 
55).  
 

 

Based on the results obtained, the algorithm LS-MP with SRS is the preferred 
algorithm. For this algorithm, the effect of the standard deviation wσ  of the noise and 

the number of samples K on the normalized standard deviation of the estimation of the 

regression coefficient has been analysed (e.g. see Figure 73). In the Monte Carlo 
simulations, the resulting values for the mean and standard deviation of the pn -

dimensional regression coefficient have been considered. The mean values of the 

estimations of the regression coefficient have been compared to the assumed values of 

the regression coefficient, and the standard deviation values of the regression 

coefficient normalized by the standard deviation of the noise and the inverse of the 

square root of K have been analysed.  

 
Based on simulations with a small number of regression components, i.e. with 8pn = , 

it turned out that for pK n≤ , the smaller K is, the more inaccurate the obtained mean 

values of the pn -dimensional regression coefficient become when compared to the 

assumed values of the regression coefficient. On the other hand for 2pK n> + , the 

obtained mean values of the regression coefficient approach the assumed values very 

accurately.  
In addition, for K larger than and close to pn , the normalized standard deviations of 

the regression coefficient can sometimes (though not always) become rather high, e.g. 
more than 103 as is for example shown in Figure 73 for 9( 1)pK n= = + .  
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For 1pK n= +  this occurred more often than for 2pK n= + , and in combination with 

higher values of wσ  this effect occurred more often. 

 

PLS-S with SRS and sigma_w = 0.01
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Figure 73. Normalized standard deviation ˆ( ) /j wf Kσ σ  for  j = 1,2,...,np with 

algorithm LS-MP with SRS for σw = 0.01  and K = {4, 6, 8, 9, 10, 25, 50, 100, 500, 
1000} for np = 8 (Similar to Figure 30 for algorithm PLS-S with SRS). 
 

 
Also for a small number of regression components, i.e. with 8pn =  and K large 

enough such that 1pK n> +  (seeFigure 73) the normalized standard deviations of the 

regression coefficient do not really converge to some fixed number, but instead 

converge to a range (in the simulations, the size of this range is below 3) though 

within this range they can vary. This range is independent of the value of the standard 
deviation wσ  of the noise, though it is dependent of the value of K, since the larger K 

is, the smaller the values of this range are.  
Only for extremely high values of the standard deviation wσ  of the noise, the mean 

values of the estimations of the regression coefficient become very inaccurate when 

compared to the assumed values of the regression coefficient. Figure 74, for example 
shows the inaccuracies for 100wσ = , whereas for 1000wσ =  they have not even been 

shown in the figure, since they are very inaacurate and the figure would become 
unreadable. Related to these high values for wσ , also the standard deviations of the 

regression coefficient become very large. 
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PLS-S with SRS and K = 32 
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Figure 74. Mean ˆ( )jfµ  values as a function of j = 1,2,...,np with algorithm LS-MP 

with SRS for K = 32 and σw = {0.001, 0.01, 0.1, 1, 2, 4, 8, 10, 100} for np = 8. The 
red line indicated as ‘Real fj’ represents the true values for jf  } (Similar to 

Figure 45 for algorithm PLS-S with SRS). 
 

 

These results confirm that LS-MP with SRS is the preferred algorithm. But even LS-

MP with SRS cannot do the impossible as is shown in Figure 74, when the K  is 
smaller than or equal to the dimension pn  of the regression coefficient or when the 

standard deviation wσ  of the noise becomes unreasonably high, the normalized 

estimation errors tend to increase. Therefore it is best to choose a value K  that is 
larger than though not too close to pn , and moreover very high values for the standard 

standard deviation wσ  of the noise should be avoided. 
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Appendix A Partial Least Squares regression 

The Partial Least Squares (PLS) regression method is explained in this appendix. It 

first starts with the Multi-dimensional Linear Regression (MLR) problem, and then 

describes the PLS regression.  

 

A.1 Multi-dimensional Linear Regression (MLR) 

In [Geladi & Kowalski, 1986] it is assumed that the values of each variable are used 

in the mean-centered form. The MLR problem in terms of the mean-centered X0 and 

mean-centered y0  is described as follows [Geladi & Kowalski, 1986].  

 

Consider 

 

0 0y X b e= +  (A.1) 

 

or written in full:  

 
0

1 10 01
1,1 1,0

2 22

0 0
,1 ,0
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n n m
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b ey
x x
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x x
b ey

     
      
      = +      
        

    

⋯

⋮ ⋮
⋮ ⋮⋮

⋯

 

  

which describes multi-linear dependencies for n samples, where 

y0:  n×1, y0  is the column vector for n samples (also called one dependent 

variable or one response variable) 

X0: n×m, (X0 : independent variable) 

b: m×1  (sensitivities; regression coefficients)  

e: n×1 (error or residual) 

n:  is the number of samples  

m: is the number of independent variables  

 

The least squares solution of (A.1) is  

 

( )0 0 0 0
ˆT TX X b X y=  

or 

 ( ) 1

0 0 0 0
ˆ T Tb X X X y

−
=   if  inverse ( ) 1

0 0
TX X

−
 exists 

(A.2) 
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The Multi-dimensional Linear Regression (MLR) formula with more than one 

dependent variable is described as follows [Geladi & Kowalski, 1986] in terms of the 

mean-centered X0 and mean-centered Y0  is as follows 

 
Y0 = X0 B + E  (A.3) 

 

or written in full:  

 
0 0 0 0 1
1,1 1, 1,1 1, 1 1 1,1 1,

0 0 0 0 1
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p m p
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n n p n n m m m n n p
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y y x x b b e e

      
      = +      
      
      

⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯ ⋯

 

 

where 

Y0 : n×p matrix Y0 is referred to as the dependent variable, with p > 1, i.e. 

at least two response variables); is also referred to as matrix of 

responses or called matrix of dependent variables [Abdi, 2003] 

X0 : n×m matrix X0 is referred to as independent variable; is also referred to 

as matrix of predictors or regressors [Abdi, 2003] 

B: m×p  (matrix of sensitivities for the MLR method)  
E: n×p (matrix of error or residual) 

n: is the number of samples 

m: is the number of independent variables  

p: is the number of dependent variables  

 

Estimator B̂  satisfies the following equation 

 

( )0 0 0 0
ˆT TX X B X y=  

or 

 ( ) 1

0 0 0 0
ˆ T TB X X X y

−
=   if  inverse ( ) 1

0 0
TX X

−
 exists 

(A.4) 

 

 



iFly 6th Framework programme Deliverable D7.2f 

 

22 March 2011 TREN/07/FP6AE/S07.71574/037180 IFLY Page 125/144 

 

Consider three cases: 

 

1. n m< , i.e. more variables (m) than samples (n)  
In this case rank ( 0 0

TX X ) ≤ n < m, hence matrix 0 0
TX X  is not invertible. 

Classical Least Squares cannot be applied for this case. 

 

2. n m= , i.e. number of variables (m) and samples (n) are equal 

This case gives a unique solution for B provided that X0 has full rank (in which 
case matrix 0 0

TX X  is invertible). For =n m, the matrix inversion can cause 

problems because the matrix 0 0
TX X  might be ill-conditioned.  

 

3. >n m, i.e. more samples (n) than variables (m)  

Similarly as for n m= , this case gives a unique solution for B provided that X 
has full rank (in which case matrix 0 0

TX X  is invertible), though the matrix 

inversion can cause problems because the matrix 0 0
TX X  might be ill-

conditioned.  

 

Partial Least Squares methods can be applied to handle Multi-dimensional Linear 
Regression problems where matrix 0 0

TX X  is not invertible or is ill-conditioned.   

 

 

A.2 Partial Least Squares Regression 

Partial Least Squares methods, originally developed in the 1960s and 1970s by the 

econometrician Herman Wold (1966, 1973, 1975) to address problems in econometric 

path modelling, and are useful for models with many variables but not necessarily 

many samples or observations. The PLS method was subsequently adopted by his son 

Svante Wold and many others in the 1980s for regression problems in chemometric 

and spectrometric modeling. One of the first applications of PLS to regression is 

[Wold et al., 1984]. The stability of the predictors derived from PLS methods make 

PLS regression methods perform better than other well known regression techniques 

[Höskuldsson, 1988]. PLS regression allows more independent variables m than the 

number of samples n and is able to deal with singularity, see [Ränner et al, 1994] and 

[Rosipal & Trejo, 2001]. In PLS, components are selected that give ‘maximal’ 

reduction in the covariance XTY of the data; in that sense PLS will give the minimum 

number of variables that is necessary [Höskuldsson, 1988].  

 

PLS creates orthogonal score vectors (also called latent vectors or components) by 

maximizing the covariance between different sets of variables [Rosipal & Krämer, 

2006]. There are different PLS techniques to extract latent vectors, and each of them 

gives rise to a variant of the PLS.  
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The predictor and predicted (response) variables (i.e. X and Y variables respectively) 

are each considered as a block of variables. PLS then extracts the score vectors which 

serve as a new predictor representation and regresses the response variables on these 

new predictors. 

 

In general, PLS methods are fast, they are characterized by high computational and 

statistical efficiency [Boulesteix & Strimmer, 2006]. In literature however, there exist 

a large number of algorithmic variants of PLS, which makes it very difficult to 

understand the principles underlying PLS. Most of the literature gives a description of 

(iterative) algorithms for the Partial Least Squares regression, such as in the tutorial of 

[Geladi & Kowalski, 1986]. Some numerical properties of the PLS regression 

algorithm are described in [Höskuldsson, 1988]. An alternative approach to PLS 

regression is described in [De Jong, 1993], which is called the SIMPLS method (a 

Straightforward IMPlementation of a statistically inspired modification of the PLS 

method) and calculates the PLS factors directly as a linear combination of the original 

values.  

 

An overview of recent advances is given in [Rosipal & Krämer, 2006], there are 

different forms of PLS, the most frequently used are PLS1 (i.e. the dependent variable 

or response variable y is a column vector) and PLS2 (i.e. the dependent variable or 

response variable Y is a matrix). It is shown in [De Jong, 1993] that SIMPLS and 

PLS1 give the same result, whereas for the case that there are more than one 

dependent variables the results are slightly different. 

 

Hereafter a description of the algorithm is given, which is based on [Geladi & 

Kowalski, 1986], [Höskuldsson, 1988], [Ränner et al., 1994], [Rosipal & Krämer, 

2006] and [De Jong, 1993], although there are differences between these different 

approaches. Differences are mainly in different ways of scaling, i.e. normalization, 

within the algorithm, which makes it difficult to directly compare results within the 

algorithm.  

 
 
A.2.1. PLS centering and scaling 
Assumption: 

All variables, both dependent and independent, are assumed to be mean-

centered and are assumed to have some kind of scaling. (Ref: [Geladi & 

Kowalski, 1986]).  

 

Not all algorithms use scaling, in this appendix we apply scaling in the PLS 

algorithm, i.e. we start with centering and scaling of X and Y, i.e. by subtracting off 
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column means and dividing by standard deviation of each column, to get centered and 
scaled variables 0X  and 0Y  

 

( )
( )

1
0

1
0

X X

Y Y

X X

Y Y

−

−

= − Μ Λ

= − Μ Λ
 (A.5) 

 

where  

XΜ  is a n×m matrix with column means as given below 

XΛ   is a m×m diagonal matrix with standard deviations of each column 

YΜ   is a n×p matrix with column mean as given below 

YΛ    is a p×p diagonal matrix with standard deviations of each column 

 

with the following notations: 
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where the mean jx of the j-th column is defined as ,
1

1 n

j i j
i

x x
n =

= ∑ ,  and similarly for 

the mean jy . 

 

In this case the mean of X0 = 0 and standard deviation of X0 = 1, and similarly for Y0. 

 

 
A.2.2 PLS decomposition 
As described in [Geladi & Kowalski, 1986] and [Rosipal & Krämer, 2006], PLS 

decomposes the n×m matrix of zero-mean variables X0  and the n×p matrix of zero-

mean variables Y0  into two outer relations (X0  and Y0  blocks individually) and an 

inner relation (linking both blocks, i.e. it is assumed that there is a linear relation 

between the score vectors t and u).  

 

Then PLS is applied on X0 and Y0: 

 
First block of variables:  0

TX T P E= +  (A.6) 

Second block of variables:  0
TY U S F= +  (A.7) 



iFly 6th Framework programme Deliverable D7.2f 

 

22 March 2011 TREN/07/FP6AE/S07.71574/037180 IFLY Page 128/144 

 

Inner relation:   U T D H= +  (A.8) 

 

where T  and  U are n×a matrices of the a extracted score vectors (components, 

latent10 vectors), the m×a matrix P and the p×a matrix S  represent matrices of 

loadings11 and the n×m matrix E and the n×p matrix F are the matrices of residuals. 

Matrix D is an a×a diagonal matrix and H denotes the n×a matrix of residuals. 

 

The classical PLS method is based on the nonlinear iterative partial least squares 

(NIPALS) algorithm [Rosipal & Krämer, 2006], and finds weight vectors w and q 

such that 

 

( ) ( ) ( )2 2 2

0 0 0 0
1

Cov , Cov , max Cov ,
r v

t u X w Y s X r Y v
= =

= =            

where 

( )Cov , /= Tt u t u n 

denotes the sample covariance between the score vectors t and u , and n the number of 

samples. 

 

Substitution of (A.8) into (A.7) yields that  

 

0 *TY T C F= +  (A.11) 

 

where TC  denotes the a×p matrix of regression coefficients, and *F  the n×p residual 

matrix, where  

 
T TC D S=  (A.12) 

 

and 
* TF H S F= +  (A.13) 

 

Equation (A.11) is simply the decomposition of Y0  using ordinary least squares 

regression with orthogonal predictors T. 

 

 

Least squares solutions  
Note that the least squares solutions for (A.6) and (A.11) are: 

 
                                                 
10 Latent variables replace the original variables by a smaller number of 'underlying' variables. 
11 Loading vectors are the estimated weights which are to be applied to the variables when fitting the 
bilinear relationship between the Y and X variables. (Ref: 
http://www.bioss.ac.uk/smart/unix/mplsgxe/slides/glossary.htm) 
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( )
( )

1

0

1

0

ˆ

ˆ

−

−

=

=
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T T

P X T T T

C Y T T T
 (A.14) 

 
 
A2.2.1 Iterative process 
PLS is an iterative process which calculates a set of a orthogonal X block factors 

scores T = [t1, t2,  ..., ta ] companion Y block factor scores U = [u1, u2,  ..., ua ]  factor 

by factor. The first PLS factors t1 and u1 are weighted sums of the centered variables: 

t1= X0 w1 and u1= Y0 s1 respectively. Usually the weights are determined via the 

NIPALS algorithm. This is an iterative sequence which starts by choosing for u1 some 

column of Y0, e.g., the one having maximum variance. The iterative sequence then is: 

 

1

1

1

1

T
h h h

h h h

T
h h h

h h h

w X u

t X w

s Y t

u Y s

−

−

−

−

∝
=

∝
=

 (A.15) 

 

and stops when wh or th do not change given some pre-specified tolerance.  

The symbol ∝  not only denotes proportionality, but also a subsequent normalization 

of the resultant vector. Thus the weight vectors wh and sh have length 1. (Different 

normalizations are possible, the specific choice being rather a matter of habit or of 

convenience). See pages 252-254 in [De Jong, 1993], for a more detailed description, 

see Appendix B. 

  

Once the X block factor th is obtained one proceeds with deflating the data matrices. 

This yields new data sets Xh and Yh which are the matrices of residuals obtained after 

regressing all variables on th  

 

( ) ( )
( ) ( )

1 1

1 1

/
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− −

− −

= −

= −
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 (A.16) 

 

These equations can be written as 

 

1

1 1

T
h h h h

T T
h h h h h h h h
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where ph represents the vector of loading of factor th on the X variables, scalar bh is 

the estimated regression coefficient for the so-called inner relation between the two 

data sets relayed via their latent variables 

 

( )

( )

1 /

ˆ

/

−=

=

=

T T
h h h h h

h h h

T T
h h h h h

p X t t t

u b t

b u t t t

 (A.18) 

 

After extraction of the a components, matrices T, U, S, P and W are created consisting 

of the columns created by the vectors extracted during the individual iterations, i.e. 

 
[ ]
[ ]
[ ]
[ ]
[ ]

1 2

1 2

1 2

1 2

1 2

, , ,

, , ,

, , ,

, , ,

, , ,

a n a

a n a

a p a

a m a

a m a

T t t t

U u u u

S s s s

P p p p

W w w w

×

×

×

×

×

=

=

=

=

=

…

…

…

…

…

 (A.19) 

 

and the (estimated) regression coefficient bh are saved in the diagonal matrix D 

 

[ ]1 2diag( ) diag , , ,
×

= = … a a a
D b b b b  (A.20) 

 

 

Weight vectors q and c 
Note that for example [Höskuldsson, 1988] and [Ränner et al., 1994] use the weight 

vector ch, while others use weight sh instead (see for example [Geladi & Kowalski, 

1986] and [De Jong, 1993]) in their algorithm, both vectors are related as 

 
T T
h h hc b s≡  (A.21) 

 

where the weight vector c is not scaled to unit norm; while as stated before the weight 

vectors wh and sh have length 1. 

 

After extraction of the a components, matrix C is created to consist of the columns 

created by the vectors extracted during the individual iterations, i.e. 

 
[ ]1 2, , ,

×
= … a p a

C c c c  (A.22) 

 

In matrix form this Equation (A.20) equals Equation (A.12), i.e.  
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T TC D S=  (A.12) 

 

A PLS algorithm based on Nonlinear Iterative Partial Least Squares (NIPALS) is 

described in more detail in Appendix B. 

 
 
A.2.2.2 Number of latent components 
For the number of factors a, i.e. the number of latent components, used in PLS with a 

matrix X  of size n×m  the maximal value can be chosen, i.e. 

max rank( ) min( , )a X n m≤ ≤ , but in [Boulesteix & Strimmer, 2005] it is described that 

with PLS it is desirable to choose as small a value of a as possible without sacrificing 

too much predictive power. One straightforward statistical procedure to estimate this 
minimum value mina  is the method of cross-validation, which is described on page 9 

in (Boulesteix & Strimmer, 2005).  For example a default value can be 
min( 1, )= −a n m (See also plsregress.m in Matlab). 

 

 
A.2.2.3 Properties of matrices 
(Orhtogonality) properties of the PLS factors (e.g. column vectors in the iterative 

algorithm) are described in [Geladi & Kowalski, 1986], [Höskuldsson, 1988] and 

[Ränner et al., 1994]. 

 

The properties are summarized as follows: 

• The vectors pi  and  si have unit length for each i = 1,2,..., a   

• The vectors ti and ui  are centred around zero for each  i = 1,2,..., a   

• The vectors wi are mutually orthogonal: wi
T wj = 0 for i ≠ j   

(in other words WT W is a diagonal matrix) 

• The vectors ti are mutually orthogonal: ti
T tj = 0 for i ≠ j 

(in other words TT T  is a diagonal matrix) 

• The vectors wi are orthogonal to the vectors pj for i<j : wi
T pj = 0 for i < j  

(in other words the matrix WT P is a lower triangular matrix) 

• The vectors ti are orthogonal to the vectors uj for i<j : ti
T uj = 0 for i> j  

(in other words the matrix TT U is a lower triangular matrix) 

• The vectors pi are orthogonal in the kernel space of X: pi
T (XT X)- pj = 0 for i ≠ j 

(where A- denotes the generalized inverse of a matrix A) 

• No special orthogonality properties are available among the vectors ui , ci and qi; 

Though these vectors satisfy some orthogonality conditions relative to some 

matrices. 
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A.2.2.4 Regression coefficient matrix for the centred and scaled variables 0X  

and 0Y  

The score matrix T  can be computed from the original X0 as follows, see [De Jong, 

1993] and [Helland, 1988]  

 

0T X R=  

 
where P , R and W have the following relation 

 

( ) 1T

T T T

R W P W

P R R P W W I

−
=

= = =
 (A.23) 

 

where W is a weight m×a matrix, and R an alternative weight m×a matrix, both share 

the same column space.  

 

In [Ränner et al., 1994] it is shown that 

 

0
TW X U=  (A.24) 

 

Substituting (A.23) into Equation (A.11) gives 

 

( )

0

0

1

0

0

*

*

*

ˆ *

−

= +

= +

= +

= +

T

T

T T

PLS

Y T C F

X RC F

X W P W C F

X B F

 

 

where ˆPLSB  is the  m×p regression coefficient matrix  

( ) 1ˆ −
= T T

PLSB W P W C  

 

Then it follows that  

 

0 0
ˆ *PLSY X B F= +    with estimator  ( ) 1ˆ T T

PLSB W P W C
−

=  (A.25) 
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A.2.3 Back to original variables 
In terms of the original (unscaled and uncentered) matrices X and Y it follows that  

 

0

* *ˆ ˆ
PLS PLSY B X B= +   (A.26) 

 

where *ˆ
PLSB  is the regression matrix computed from the data and 

0

*ˆ
PLSB  is an intercept 

term (i.e. the regression coefficient for the intercept)  

 

0

* 1

* 1

ˆ ˆ

ˆ ˆ
PLS X PLS Y

PLS Y X X PLS Y

B B

B B

−

−

= Λ Λ

= Μ − Μ Λ Λ
 (A.27) 

 

 

Proof:  Substitute 

 

( )
( )

1
0

1
0

X X

Y Y

X X

Y Y

−

−

= − Μ Λ

= − Μ Λ
 

 

into (A.25) yields 

( ) ( )1 1 ˆ *Y Y X X PLSY X B F− −− Μ Λ = − Μ Λ +  

that is 

( )

( ) ( )
0

1

1 1

1 1

* *

ˆ *

ˆ ˆ *

ˆ ˆ *

ˆ ˆ

Y X X PLS Y Y

Y X PLS Y X X PLS Y Y

X PLS Y Y X X PLS Y Y

PLS PLS

Y X B F

X B B F

X B B F

X B B

−

− −

− −

= Μ + − Μ Λ Λ + Λ

= Μ + Λ Λ − Μ Λ Λ + Λ

= Λ Λ + Μ − Μ Λ Λ + Λ

= +

 

 

where *ˆ
PLSB  is the regression matrix computed from the data 

 

( ) 1*ˆ ˆσ σ−=PLS X PLS YB B  
* 1ˆ ˆ
PLS X PLS YB B−= Λ Λ  

 

and 
0

*ˆ
PLSB  is an intercept term (i.e. the regression coefficient for the intercept) 

 

( )
0

* 1

*

ˆ ˆ *

ˆ *

PLS Y X X PLS Y Y

Y X PLS Y

B B F

B F

−= Μ − Μ Λ Λ + Λ

= Μ − Μ + Λ
 

■ 
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Appendix B PLS algorithms 

As explained in Subsection 3.5, there are different PLS algorithms as addressed for 

example in [De Jong, 1993] and [Rosipal & Krämer, 2006]. Appendix B.1 describes a 

PLS algorithm based on NIPALS and Appendix B.2 describes a PLS algorithm based 

on SIMPLS. 

 

B.1 PLS algorithm based on NIPALS 

This appendix describes a PLS algorithm based on Nonlinear Iterative Partial Least 

Squares (NIPALS), and is a more detailed description than the iterative process as 

described in Appendix A.2.2.1.  

 

It is assumed that X0 and Y0 are mean-centered and scaled, i.e. at least in [Geladi & 

Kowalski, 1986]. In [Höskuldsson, 1988] the matrices may be scaled or centered, 

where scaling can correspond to working with correlation matrices, and centering to 

subtracting mean values from each of the column values.  

 

For each component h=1,2,..., a: 

(1) Take u1 = some yj 

 

Alternatives for ustart in literature: 

• In [Geladi & Kowalski, 1986], u1 = some yj 

• In [Höskuldsson, 1988], u1 = first column of Y. 

• In [De Jong, 1993], u1 = column of Y having maximum variance 

 

 

In X-block: 

(2) ( )1 /−= T T
h h h h hw X u u u  

(as in [Geladi & Kowalski, 1986], [Höskuldsson, 1988], [Rosipal & Krämer, 

2006] and [Ränner et al, 1994]) 

 
(3) /=h h hw w w  (normalization, i.e. scale vector hw  to be of length 1 1→hw ), i.e.  

 

(4) ( )1 /−= T
h h h h ht X w w w (as in [Geladi & Kowalski, 1986]), or  

1−=h h ht X w  (as in [Höskuldsson, 1988] and [Rosipal & Krämer, 2006]) 

 

In Y-block: 

(5) ( )1 /T T
h h h h hs Y t t t−=  
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(as in [Geladi & Kowalski, 1986], [Höskuldsson, 1988] and [Rosipal & Krämer, 

2006]) 

 
(6) /h h hs s s=  (normalization, i.e. scale vector hs  to be of length 1 1hs → )  

 

(7) ( )1 / T
h h h h hu Y s s s−= (as in [Geladi & Kowalski, 1986]; and in [Höskuldsson, 1988] 

and [Ränner et al, 1994] but with ch instead of sh), or 

 

1h h hu Y s−=   (as in [Rosipal & Krämer, 2006] but with ch instead of sh ) 

 

(8) Compare t in step 4 with t in preceeding iteration, if they are equal (within certain 

rounding error), then go to step 9, else go to step 2. (If Y = y, then 5-8 can be 

omitted, and set s = 1) 

 

After convergence, calculate X loadings and rescale scores and weight accordingly 

(9)  ( )1 /−= T T
h h h h hp X t t t  

 
Ad step (9): 

In addition in [Höskuldsson, 1988] and [Rosipal & Krämer, 2006] also the Y  

loadings are calculated explicitly: 

( )1 /T T
h h h h hs Y u u u−=  

 

(10) ( ) =
Told T

h hp p   and  ( )/=
TT T old

h h hp p p   

(normalization, i.e. scale vector hp  to be of length 1 1→hp ) 

(as in in [Geladi & Kowalski, 1986]) 

(this step not in [Höskuldsson, 1988], [Rosipal & Krämer, 2006] and [Ränner et 

al, 1994]) 

 

(11) ( )=
Told

h h ht t p  

(as in in [Geladi & Kowalski, 1986]) 

(this step not in [Höskuldsson, 1988], [Rosipal & Krämer, 2006] and [Ränner et 

al, 1994]) 

 

(12) ( )=
TT T old

h h hw w p  

(as in in [Geladi & Kowalski, 1986]) 

(this step not in [Höskuldsson, 1988], [Rosipal & Krämer, 2006] and [Ränner et 

al, 1994]) 
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Steps (10)-(12): 

These steps form a scaling procedure in [Geladi & Kowalski, 1986] for obtaining 

“orthogonal t values”, but are “not absolutely necessary” (See page 11 in [Manne, 

1987]). 

These steps are not used in the PLS algorithms as described in [Höskuldsson, 1988], 

[Rosipal & Krämer, 2006] and [Ränner et al, 1994]. 

 

(Estimated) regression coefficient bh for the inner relation between the two data sets is 

(13) ( )/= T Tb u t t t  i.e., ( )/= T T
h h h h hb u t t t    

 

After extraction of the a components, matrices T, U, S, P  and W are created 

consisting of the columns created by the vectors extracted during the individual 

iterations, i.e. 

[ ]
[ ]
[ ]
[ ]
[ ]

1 2

1 2

1 2

1 2

1 2

, , ,

, , ,

, , ,

, , ,

, , ,

a n a

a n a

a p a

a m a

a m a

T t t t

U u u u

S s s s

P p p p

W w w w

×

×

×

×

×

=

=

=

=

=

…

…

…

…

…

 

and the (estimated) regression coefficient bh are saved in the diagonal matrix D 

[ ]1 2diag( ) diag , , ,
×

= = … a a a
D b b b b  

 

Calculation of residuals (general outer relation for the X block and mixed relation for 

Y block) for component h, i.e., once the X block factor th is obtained one proceeds 

with deflating the data matrices. This yields new data sets Xh and Yh which are the 

matrices of residuals obtained after regressing all variables on th  

 

( ) ( )
( ) ( )

1 1

1 1

/

/

− −

− −

= −

= −

T T
h h h h h h h

T T
h h h h h h h

X X t t X t t

Y Y t t Y t t
 

 

These equations can be written as 

 

1

1 1

T
h h h h

T T
h h h h h h h h

X X t p

Y Y t c Y b t s

−

− −

= −

= − = −
 

 
with centered and scaled variables 0X  and 0Y  for h = 1. 
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Remarks: 
The components t and u in the PLS algorithm have the interpretation that they are 

components in X and Y space. The PLS algorithm selects one pair of components at a 

time, because the covariance of the second pair is smaller than the maximal 

covariance at the next iteration (Page 218 in [Höskuldsson, 1988]). 

 

There are many equivalent ways of scaling. Scores t can be normalized in the 

algorithm, but one can also choose to introduce normalization at another point in the 

algorithm. This makes it difficult to directly compare the scores and the loadings of 

different PLS regression implementations [Mevik & Wehrens, 2007] 

 

[Geladi & Kowalski, 1986] describes a few methods to determine the number of 

components a. If the underlying model for the relation between X and Y is a linear 

model, the number of components needed to describe this model is equal to the model 

dimensionality (i.e. rank (X)).  
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B.2 PLS algorithm based on SIMPLS 

This appendix describes a PLS algorithm based on SIMPLS as described in [De Jong, 

1993], where SIMPLS stands for ‘Straightforward IMPlementation of a statistically 

inspired modification of the PLS method’. 

 

Input to the SIMPLS algorithm is: 

X  is an n×m matrix 

Y  is an n×p matrix 

a  is the number of factors 

 

The PLS algorithm first starts with centering of X and Y, i.e. by subtracting off 
column means to get centered variables 0X  and 0Y  as in Equation (27). 

 
Define the cross-product 0 0 0

TA X Y= . 

 

For each component h=1,2,..., a: 
(1) Apply Singular Value Decomposition (SVD) to matrix 1hA − , such that 

1
T

h h h hA R Q C− =   

rh = weight vector is the first column of Rh , i.e. first left singular vector from the 

SVD  

ch = first column of Ch , i.e. first right singular vector from the SVD       

qh = hth element of Qh      

 
(2) Compute X-score vector ht :  

0h ht X r=    (see Equation (24) in [De Jong, 1993]) 

/h h ht t t=  (normalization, i.e. scale vector ht  to be of length 1 1ht → )  

 
(3) Compute X-loading vector  hp :  

0
T

h hp X t=  

 
(4) Compute weight vector hq :  

/h h h hs q c t= , that is 0
T

h hs Y t=  

 
(5) Compute Y-score vector hu : 

0h hu Y s= , that is 0 0
T

h hu Y Y t=  (see Equation (26) in [De Jong, 1993]) 

 
(6) Compute weight vector hw :  

/h h hw r t=   
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(7) Orthonormal basis vector hv  obtained from modified Gram-Schmidt repeated 

twice: 

 

h hv p=  (initialize orthogonal loading vector) 

 

if 1h >  , then 

( )T
h h h h hv v V V p= −   (make v ⊥ to previous loadings) 

( )T
h h h h hu u T T u= −   (make u ⊥ to previous t values) 

end 

 
/h h hv v v=   (normalize orthogonal loadings) 

 

(8) ( )1 1
T

h h h h hA A v v A− −= −  (see Equation (34) in [De Jong, 1993]), with 1 0A A=  

 

After extraction of the a components, matrices R, T, P, S, U and V are created 

consisting of the columns created by the vectors extracted during the individual 

iterations, i.e. 
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

1 2

1 2

1 2

1 2

1 2

1 2

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

a m a

a n a

a m a

a p a

a n a

a m a

R r r r

T t t t

P p p p

S s s s

U u u u

V v v v

×

×

×

×

×

×

=

=

=

=

=

=

…

…

…

…

…

…

 

 

It is further shown that the  m×p regression coefficient matrix ˆPLSB  is (see Equation 

(37) in [De Jong, 1993]) 

 
ˆ T

PLSB R S=   

 

and the regression coefficient for the intercept is  

 

0

*ˆ ˆ
PLS Y X PLSB B= Μ − Μ   
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Appendix C List of notations and symbols 

 

a Number of factors used in PLS, i.e. number of extracted score vectors (or 

components or latent vectors) (PLS; Section 3.5) 

0A  Cross product 0 0 0
TA X Y=  of size  1pn ×  (PLS; Section 3.5) 

hA  Deflated product matrices for 1,2,3, ,h a= …  (PLS; Section 3.5) 

A+  Moore-Penrose or pseudoinverse A+ of an m n×  matrix A 

b  Bias vector ( )1 2Col , , ,
pnb b b b≜ …  

jb  Bias parameter for 1,2, , pj n= …  in bias vector b  

qχ  Change of factor in ln kq   (Section 2) 

Gχ  Change of factor in ˆln ( )kG q  (Section 2) 

( )Cov ⋅  Covariance 

D Diagonal matrix of size a×a (PLS; Section 3.5) 

G∆  Change in collision risk G (Section 2) 

q∆  Change in the value of parameter q  (Section 2) 

ε  Random error (Section 2) 

kε  Random error of k-th IPS run for 1,..,k K=  (Section 2) 

XE  Matrix of residuals of size K×np (PLS; Section 3.5) 

YE  Vector of residuals of size 1K ×  (PLS; Section 3.5) 

|| . || Euclidean norm (or 2-norm) 

0f  Intercept term 

0f̂  Estimate of the intercept term 

jf  Parameter in vector F  for 1,2, , pj n= …  

ˆ
jf  Estimate of parameter jf  for 1,2, , pj n= …  

F  Vector with model parameters or coefficients (also called regression 

coefficients) of size 1pn × ; ( )1 2Col , , ,
pnF f f f≜ …  that is 

( )1 2 p

T
nF f f f= ⋯  or 

1

1p
p

n
n

f

F

f
×

 
 

=  
 
 

⋮  

Fɶ  Vector with intercept term and model parameters or coefficients (also 
called regression coefficients) of size ( 1) 1pn + × ;  

( )0 1Col , , ,
pnF f f fɶ ≜ …  that is ( )0 1 p

T
nF f f f=ɶ ⋯  or 

0
T TF f F =  
ɶ  
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F̂  Least squares estimator of vector F of size 1pn ×  

( )1 2
ˆ ˆ ˆˆ

p

T
nF f f f= ⋯  

F̂ɶ  Least squares estimator of the extended regression vector Fɶ of size 

( 1) 1pn + ×  ; defined as ( )0 0 1
ˆ ˆ ˆ ˆ ˆˆ

p

T T
nF f F f f f = = 

ɶ ⋯  

0F   Intercept vector 0F  of size 1K × ;  defined as ( )0 0 0 0Col , , ,F f f f≜ …  or 

0

0

0 1K

f

F

f
×

 
 =  
 
 

⋮  

ˆ
PLSF  PLS estimator of the vector F of size 1pn ×  (PLS; Section 3.5) 

0

ˆ
PLSF  PLS estimator of the intercept vector 0F  of size 1K × (PLS; Section 3.5) 

( )G q  Collision risk as a function of q (Section 2) 

( )G q
q

∂
∂

 Partial derivative, n-dimensional vector (Section 2) 

Gɶ  IPS computed output value of the collision risk (Section 2) 

kGɶ  Computed output value of k-th IPS run for 1,..,k K=   (Section 2) 

ˆ ( )G q  Estimation of collision risk (with a meta-model approach) (Section 2) 

H Matrix of residuals of size K×a (PLS; Section 3.5) 

H* H* is the Hermitian transpose (also called conjugate transpose) of a 

matrix H 

K KI ×  Identity matrix of size K K×  

j  Index number 1,2, , pj n= …  

1K×j  Vector of ones of size 1K ×  

K KJ ×  Matrix of ones of size K K× , i.e. 1 1K K K KJ × × ×= j j  

k  Index number 1,2, ,k K= …  

K  Base number of samples 

( )κ ⋅  Condition number of a square matrix A , defined as 1( )A A Aκ −= ⋅  for 

a given matrix norm (e.g. p-norm, Frobenius norm) 

ℓ  Uncertainty vector ( )1 2Col , , ,
pnℓ ≜ ℓ ℓ … ℓ  

jℓ  Uncertainty parameter for 1,2, , pj n= …  in uncertainty vector ℓ  

XM  XM  is an pK n×  matrix of column means of design matrix X  

1

1

p

p
p

n

X

n
K n

x x

M

x x
×

 
 

=  
 
 

⋯

⋮ ⋮

⋯
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YM  YM  is an 1K ×  vector of column means of vector Y  

1

Y

K

y

M

y
×

 
 =  
 
 

⋮  

( )µ ⋅  Mean 

wµ   Mean value 

N Number of Monte Carlo simulations runs 

N{ · ; µw ,   σw
2 } Normal (or Gaussian) distribution with mean µw  and variance σw

2 

n Number of scalar parameters in vector q  (Section 2) 

pn  Number of scalar parameters in vectorF  

hp  Loading vector of size 1pn ×  for 1,2,3, ,h a= … , which is extracted from 

a given matrix X (PLS; Section 3.5) 

P  Loading matrix of size pn a×  , consists of a extracted loading vectors 

[ ]1 2, , ,
p

a n a
P p p p

×
= …  (PLS; Section 3.5) 

∝  Proportionality and subsequent normalization of the resultant vector  

q  Parameter q , n -dimensional (Section 2) 

*q  Specific (local) working point *q  (Section 2) 

{ , ;  1,.., }k kq G k K=ɶ  Input-output samples of k-th IPS run for 1,..,k K=  (Section 2) 

~ (.)
kk qpq  Input sample of k-th IPS run ~ (.)

kk qpq   (Section 2) 

hr  Weight vector of size  1pn ×  for 1,2,3, ,h a= …  (PLS; Section 3.5) 

R  Weight matrix of size pn a×  (also referred to as alternative weight 

matrix, as opposed to a weight matrix in the NIPALS algorithm) consists 
of a weight vectors [ ]1 2, , ,

p
a n a

R r r r
×

= …  (PLS; Section 3.5) 

hs  Loading scalar for 1,2,3, ,h a= … , which is extracted from a given  

vector Y   (PLS; Section 3.5) 

S  Loading matrix of size 1 a×  , consists of a extracted loading scalars 

[ ]1 2 1
, , , a a

S s s s
×

= …  (PLS; Section 3.5) 

( )σ ⋅  Standard deviation   
ˆ( ) /j wf Kσ σ  Normalized standard deviation of ˆ

jf  for 0,1,2, , pj n= …  

Gσ  Standard deviation Gσ  of collision risk G (Section 2) 

wσ  Standard deviation value 

qΣ  Covariance of parameter q  (Section 2) 

ht  Orthogonal vector of size 1K ×  for 1,2,3, ,h a= … , which is extracted 

from a given matrix X (PLS; Section 3.5) 

T  Score matrix of size K a×  , consists of a extracted score vectors 

[ ]1 2, , , a K a
T t t t

×
= …  (PLS; Section 3.5) 
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hu  Vector of size 1K ×  for 1,2,3, ,h a= … , which is extracted from a given  

vector Y   (PLS; Section 3.5) 

U  Score matrix of size K a× , consists of a extracted score vectors 

[ ]1 2, , , a K a
U u u u

×
= …  (PLS; Section 3.5) 

hv  Vector of size 1pn ×  for 1,2,3, ,h a= …  (PLS; Section 3.5) 

V  Matrix of size pn a×   which  consists of vectors hv , i.e.   

[ ]1 2, , ,
p

a n a
V v v v

×
= …  ;  [ ]1 2, , , av v v…  represents an orthonormal basis of 

[ ]1 2, , , ap p p…  for X-loading vectors hp  (PLS; Section 3.5) 

( )Var ⋅  Variance 

kw  Random noise variable for 1,2, ,k K= …   

W  Column vector of size 1K ×  ; ( )1 2Col , , , KW w w w≜ … , that is 

( )1 2
T

KW w w w= ⋯  or 
1

1K K

w

W

w
×

 
 =  
 
 

⋮  

kx  Random variable of size pn  (in Section 2 of size n) for 1,2, ,k K= … ; 

( ),1 ,2 ,Col , , ,
pk k k k nx x x x≜ …  that is ( ),1 ,2 , p

T
k k k k nx x x x= ⋯  or 

,1

,
1p

p

k

k

k n
n

x

x

x
×

 
 

=  
 
 

⋮  

kxɶ  Random variables of size ( )1pn +  for 1,2, ,k K= … ;  

( ),1 ,Col 1, , ,
pk k k nx x xɶ ≜ …  that is  ( ),1 ,1

p

T
k k k nx x x=ɶ ⋯  or [ ]1T

k kx x=ɶ  

,k jx  Random variable in matrix X  for 1,2, ,k K= …  and 1,2, , pj n= …  

jx  
Mean of the j-th column of matrix X , i.e.  ,

1

1 K

j k j
k

x x
K =

= ∑  

X Design matrix X  of size pK n×  ;   

( )1 2Col , , ,T T T
KX x x x≜ …  that is ( )1 2

T T T T
KX x x x= ⋯  or 

1,1 1, 1

,1 ,

p

p
p

p

T
n

T
K K n K K nK n

x x x

X

x x x
××

   
   = =   
       

⋯

⋮ ⋮ ⋮

⋯

 

cX  Centered matrix of design matrix X  of zero-mean variables of size 

pK n×  , i.e.  c XX X M= −  
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0X  
Matrix of size pK n×  , i.e. 0

1
K K K KX I J X

K× ×
 = − 
 

  or 

1,1 1 1,

0

,1 1 ,

p p

p p

n n

K K n n

x x x x

X

x x x x

 − −
 

=  
 − − 
 

⋯

⋮ ⋮

⋯

 

Xɶ  Design matrix [ ]1KX X×= jɶ  of size ( )1pK n× + , i.e. 

( )1 2Col , , ,T T T
KX x x xɶ ɶ ɶ ɶ≜ …  that is ( )1 2

T T T T
KX x x x=ɶ ɶ ɶ ɶ⋯  or 

1,1 1, 1

,1 , ( 1)( 1)

1

1

p

p
p

p

T
n

T
K K n K K nK n

x x x

X

x x x
× +× +

   
   = =   
       

⋯ ɶ

ɶ ⋮ ⋮ ⋮ ⋮

ɶ⋯

 

ky  Output values or known realisations for 1,2, ,k K= …  

y  
Mean of column vector Y , i.e. 

1

1 K

k
k

y y
K =

= ∑  

Y Column vector Y  of size 1K ×  ;    

( )1 2Col , , , KY y y y≜ … , that is ( )1 2
T

KY y y y= ⋯  or  

1

1K K

y

Y

y
×

 
 =  
 
 

⋮  

cY  Centered column vector of vector Y  of zero-mean variables of size 1K × , 
i.e.   c YY Y M= −  

0Y  
Column vector of size 1K × , i.e.  0

1
K K K KY I J Y

K× ×
 = − 
 

   or   

1

0

K

y y

Y

y y

 −
 =  
 − 

⋮  

jzɶ  Chosen value for 1,2, , pj n= …  in ( )1 2Col , , ,
pnz z z z=ɶ ɶ ɶ ɶ…  

zɶ  ( )1 2Col , , ,
pnz z z z=ɶ ɶ ɶ ɶ…  

,LOW HIGH

j jz z  ɶ ɶ  Sampling interval for 1,2, , pj n= …  

 

 


