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Abstract— Multiplexed Model Predictive Control (MMPC) was
originally developed for a multi-input system as a strategy to
reduce online computation. In this paper, we demonstrate how
distributed control of a system of agents can be posed as a
Multiplexed Model Predictive Control problem. Specifically,
we consider using robust multiplexed MPC for controlling a
system of agents in the presence of coupling constraints in
the form of a collision avoidance requirement. The system
is subject to persistent unknown, but bounded disturbances.
The contribution of this paper is the extension of the original
robust multiplexed MPC algorithm to include a disturbance
feedback policy in between updates. This facilitates finding
feasible solutions and inherits the property of rapid response
to disturbances from multiplexing the control. In addition, it is
observed that the computational time of the proposed MMPC
schemes scales favourably with the number of agents.

I. INTRODUCTION

Model Predictive Control (MPC) is a control formulation
which solves an open loop optimal control problem at each
time step [9], with explicit inclusion of operating constraints
in the online optimisation. Multiplexed Model Predictive
Control was developed initially by [5] for multi-input sys-
tems of a general structure, as a strategy for reducing online
computation, and was developed further in [13] and [6]. The
original MPC problem is divided temporally into a collection
of controllers optimising in sequence on the same processor.
In this paper we demonstrate its application as a distributed
MPC scheme for performing cooperative control of a system
of dynamically decoupled agents with coupled constraint
sets.

Performing a centralised optimisation for an entire system of
agents can be computationally expensive, and a considerable
body of work exists on Distributed MPC (DMPC) seeking
to address this. A scheme for dynamically coupled agents
with separable cost but decoupled constraints is presented
in [2], and is proved to be nominally stable, subject to the
requirement of move suppression. Schemes of [18] involve
simultaneous optimisation of agents, with iteration until
convergence, but the case of coupling in the constraints is
not considered. Similarly, in the formulation of [4], agents
optimise in parallel, with consideration given to neighbouring
agents, but no global coupled constraint guarantees exist. The
challenge posed by the existence of coupled constraints when
optimising in a distributed fashion is clearly that of ensuring
consistency between agents. Methods addressing this include
iterative schemes such as dual decomposition techniques [16]
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and Nash bargaining schemes [3], which can suffer from
slow convergence and do not necessarily achieve optimality
in the presence of nonconvex constraints.

The presence of disturbances presents further challenges
to DMPC. Robust feasibility and stability guarantees are
obtained in the scheme of [11] which adopts a ‘leader-
follower’ architecture. Agents optimise their plans according
to a sequence, and constraint satisfaction is enabled via the
tightening of constraints on each agent to accommodate both
disturbances, and the plans of agents yet to optimise in
the sequence. Our proposed formulation improves on this
by permitting only a single agent to update at a time, thus
reducing the communication requirements and computation
time per timestep, permitting improved disturbance rejection.
This single update feature is also common to the distributed
tube MPC method in [17]. Our robust MMPC algorithm
however employs constraint tightening to achieve robustness,
which is less conservative than the tube approach.

Direct application of the robust MMPC algorithm as pre-
sented in [13] for unstable systems of decoupled structure
would result in infeasibility in most cases, due to the re-
sulting unstable disturbance rejection feedback policies and
unbounded disturbance invariant sets. To overcome this, we
adapt the formulation so that nonupdating agents apply a
feedback policy, determined offline, in between updates, thus
enabling feasibility. The resulting scheme then is a means
of distributing computation without iteration, with guaran-
tees of robust constraint satisfaction obtained by constraint
tightening. Agents exchange plans and their experienced
disturbances, and optimise for new plans using nominal
dynamics. We describe two approaches; the first is equivalent
to single update DMPC, and the second is akin to single
update with move-blocking. Both schemes are subsumed by
the MMPC framework.

Some of the notation used in this paper is outlined here.
The state, control and change in control inputs are denoted
x, u and ∆u respectively. We use xj,k to depict the actual
measured state of agent j at time k. At the time instant k,
the prediction of the state i steps in the future is denoted
xj,k+i|k. We use ∼ to denote Pontryagin set difference.

The structure of the paper now follows. We begin by for-
mulating the distributed control problem in consideration
in section II. Robust Multiplexed MMPC is then reviewed,
and the two novel formulations developed for our specific
problem are detailed. In section III we include simulations
performed on collision avoidance scenarios in a realistic air
traffic control setting, and concluding remarks are made in
section IV.



II. PROBLEM FORMULATION AND BACKGROUND

We consider the problem of driving a system of agents
to their respective target regions in minimum time, with
minimum control effort, in a 2-D setting. We consider linear
dynamics for each of the m point mass agents with state
x(t), comprising position and velocity, subject to control
input accelerations u(t) and disturbance inputs w(t). Time
discretisation of the dynamics with zero order hold yields:

xj,k+1 = Axj,k +Buj,k + wj,k. (1)

The state xj,k of agent j comprises its position and velocity
so that

xj,k = [rj,x rj,y vj,x vj,y]T .

The disturbances act on the state and are assumed to be
unknown but bounded, so that

wj,k ∈ W ∀ j, k (2)

with
W = {wk : ‖wk‖∞ ≤Wmax}. (3)

It is assumed that the states are perfectly measured at each
time step. Each agent is subject to local constraints on speed
and input accelerations

[0 I2]xj,k ∈ Y ∀ k, j ∈ Nm := {1, . . . ,m}, (4)

in addition to state constraints coupled across all the agents.
We can represent the individual agents’ states as a single
combined state, by stacking the state vectors xj,k ∈ R4 to
obtain xk ∈ R4m,

xk =

 x1,k

...
xm,k


so that the constraints coupling the agents can be expressed

xk ∈ X. (5)

Given a minimum separation distance R, we have the fol-
lowing positional constraints:

X := {xk ∈ R4m : ‖[I2 0](xp,k − xq,k)‖2 > R}
∀ k∀p, q ∈ Nm, p 6= q (6)

which we approximate using polygons [15].

The cost function to be minimised by each agent j is a
combination of the time taken to reach its target region Tf
and the weighted one norm in control input

V (k) =
Tf∑
i=0

(γ|uj,k+i|k|+ 1) (7)

It is shown in [12], [14] how minimisation of (7) is achieved
by minimisation of a hybrid objective

V (k) =
N−1∑
i=0

(γ|uj,k+i|k|+ i.tj,k+i|k) (8)

where N, identified by the user, denotes the maximal horizon
time and provides an upper bound on the arrival time Tf .
When the binary variable tj,k ∈ {0, 1} takes the value 1,

agent j is required to enter its target region Pj at the next
time k + 1, so that

xj,k+1 ∈ Pj (9)

This constraint is enforced using a big-M [1] formulation.The
target regions, chosen by the user, are assumed to be polyg-
onal.

We impose the terminal constraint that the target set is
reached by the end of the prediction horizon,

N−1∑
i=0

tj,k+i|k = 1. (10)

A. Robust Multiplexed MPC

This section reviews multiplexed MPC, introduced by [5] and
[13], in the context of the problem statement presented. In
multiplexed MPC, the agents’ predictions and control moves
are updated in a sequential and cyclic manner, with only one
agent updating at any one time. Without loss of generality,
we use the indexing function σ(k) = (k mod m) + 1 to
identify the agent updating at time instant k. We define Ã =
Im ⊗A, B̃ = Im ⊗A, K̃ = Im ⊗A,

Bσ(k) =



0
...
B
0
...
0


and Kσ(k) =



0
...
KT

0
...
0



T

,

where A and B are one-step matrices and Bσ(k) and Kσ(k)

are periodic matrices whose σ(k)th entries are B and K,
and 0 everywhere else. Note that whilst the formulation
permits distinct dynamics for each subsystem, we consider
only homogeneous agents. The dynamics of the joint sys-
tem according to the original multiplexed algorithm can be
expressed as

xk+1 = Ãxk +Bσ(k)uk + wk (11)

where wk = [wT1,k, . . . w
T
j,k, . . . w

T
m,k]T , wk ∈ R4m. In

our proposed modified formulation, agents employ an affine
disturbance rejection policy, in which the feedforward term
is updated sequentially, and the feedback gains are calculated
offline. The control input corresponding to agent j is given
by

uj,k|k = uj,k|k−l +
l−1∑
i=0

Piwj,k−l+i (12)

where the feedback gains Pi assume the form Pi = K(A+
BK)i, and l is the number of steps since agent j last
performed an optimisation, with 0 ≤ l ≤ m. We can then
express the dynamics as:

xk+1 = Ãxk +Bσ(k)uk

+
∑

n∈Nm\σ(k)

Bn(un,k|k−1 +Knwn,k−1) + wk

In the next section we review how the constraint sets are
constructed to ensure feasibility of (12).



B. Robust MMPC with Constraint Tightening

In [13] a method of guaranteeing feasibility despite the
presence of unknown disturbances is shown. Robust fea-
sibility is achieved when, given an initially feasible input
sequence, subsequent optimisations are guaranteed to be
feasible, despite the presence of uncertainty in the dynamics.
To achieve robust feasibility, the state constraints xk ∈ X and
input constraints uk ∈ Uk are tightened using a recursion to
compensate for the uncertain effects of future disturbances
in the prediction horizon, as shown in the following

Xi+1,σ(k) = Xi,σ(k+1) ∼ Li,σ(k+1)W (13)
Ui,σ(k) = Ui−1,σ(k+1) ∼M(i−1),σ(k+1)W. (14)

where

L0,σ(k) = I (15)
Li+1,σ(k) = ALi,σ(k) +Bσ(k+i)Mi,σ(k). (16)

The disturbance rejection matrices Mi,σ(k) are designed
offline. In view of the relations (15) and (16), our specific
choice of feedback policy Pi defined earlier yields the
following parameterisation in terms of the state transition
matrix Li,σ(k)

Mi,σ(k) = Kσ(k+i)Li,σ(k) (17)

so that

Li+1,σ(k) = (Ã+Bσ(k+i)Kσ(k+i))Li,σ(k). (18)

At time k, agent σ(k) = j minimises

V (k) =
N−1∑
i=0

(γ|uj,k+i|k|+ itj,k+i|k) (19)

with respect to inputs uk+i|k and binary inputs tj,k+i|k for
all k + i = j, subject to the nominal prediction model and
tightened constraints:

xk|k = xk (20)
xk+i|k ∈ Xi,σ(k) (21)
tj,k+i|k ∈ {0, 1} (22)
xk+N |k ∈ Tσ(k) (23)

Tσ(k) = Tf ∀k, with Tf := {x ∈ R4m : tj = 0 ∀j ∈ Nm}

where the last constraint (23) is the terminal constraint in
(10). A centralised solution which optimises over all agents’
inputs is required to initialise the distributed scheme, and is
a common requirement in distributed schemes [17], [12].

Centralised Objective for MMPC:

V (k) =
m∑
j=0

N−1∑
i=0

(γ|uk+i|k|+ itj,k+i|k) (24)

The nonconvex collision avoidance and speed constraints
in (4) and (6) are enforced using a big-M formulation
[1]. The use of mixed integer programming for obstacle
avoidance has been employed for instance in [15]. Details
of the implementation of the variable horizon formulation
with constraint tightening as a mixed integer linear program
(MILP) are presented in [12] for the single agent case. It

is shown how the target set constraints are tightened as a
function of the horizon in the form of margins. Once an agent
enters its target set, its operational constraints are relaxed
using a big-M formulation. In our multi-agent setting, we
are also required to relax all avoidance constraints involving
completed agents. Relaxation of the constraints on reaching
the terminal set is crucial for establishing robust completion
guarantees, as noted in [12].

Algorithm 2.1: (Robust Multiplexed MPC with constraint
tightening)

1) Initialise by minimising (24) over all variables
uj,k+i|k, tj,k+i|k subject to (20)-(23).

2) All agents apply uj,k|k

3) Wait one timestep

4) increment k and communicate disturbances {wj,k}

5) while
∑
j tj,k > 0

• Agent σ(k) minimizes (19) subject to (20)-(23)
and (12),

• Agent σ(k) applies uσ(k),k|k. Other agents apply
(12)

• Increment k, remove completed agents so that
m = m−

∑
j(1− tj,k), update σ(k)

end

To establish robust feasibility of Algorithm 2.1, we require
the following result, taken from [13] with a minor modifi-
cation for our specific parameterisation of our disturbance
rejection policy Mi,σ(k):

Lemma 2.1: Given that

xk+1 = xk+1|k + wk (25)

and

uj,k+i|k = uj,k+i|k−1 +KjLi−1,σ(k)wk−1 ∀ j (26)

Then

xk+i+1|k+i = xk+i+1|k + Li,σ(k+1)wk.

Proof: This is proved by induction on i. Assume true
for some i. Then,

xk+i+1|k+1 =

Ãxk+i|k+1 +Bσ(k+i)uσ(k+i),k+i|k+1

+
∑

n∈m\σ(k+i)

Bn(un,k+i|k +KnLi−1,σ(k+1)wk)



The summation term corresponds to the non-optimising
agents applying the proposed disturbance feedback policy

xk+i+1|k+1 = Ã(xk+i|k + Li−1,σ(k+1)wk)
+Bσ(k+i)uσ(k+i),k+i|k+1

+
∑

n∈m\σ(k+i)

Bn(un,k+i|k +KnLi−1,σ(k)wk).

By assumption,

uσ(k),k+i|k+1 = uσ(k),k+i|k +Kσ(k+i)Li−1,σ(k+1)wk

so that

xk+i+1|k+1 = Ãxk+i|k+Bσ(k+i)uk+i|k+
∑

Bnun,k+i|k

+(Ã+Bσ(k+i)Kσ(k+i) +
∑

n∈m\σ(k+i)

BnKn)Li−1,σ(k+1)wk

= xk+i+1|k + (Ã+ B̃K̃)Li−1,σ(k+1)wk

= xk+i+1|k + Li,σ(k)wk.

The last line follows from (18). The result is then true for
i+ 1. From (25), the result is true for i = 0 and hence true
∀ i.

Theorem 2.1: If the system of agents is controlled by Al-
gorithm 2.1, and the initial optimisation can be solved, the
optimisation remains feasible, namely the constraints xk ∈ X
are satisfied for all disturbances satisfying (2). If the control
weighting is chosen to satisfy the condition

1−mγmax
w

∞∑
i=0

‖(A+BK)iw‖ > 0, (27)

modified from [12] to accommodate multiple agents, the
agents are driven to their targets in finite time.

Proof: The result follows from combining results from
[13] and [12]. Feasibility follows from the result of Lemma
2.1 and the construction of the tightened constraint sets, the
details of which are in [13]. For robust completion, the basic
idea is that while at least one agent has yet to reach its target
region, the optimal cost must reduce by at least the amount
given by the left hand side of (27). Non negativity of the
cost dictates that all agents must reach their targets in finite
time.

Remark 2.1: In the absence of the proposed modification of
including disturbance feedback between updates, limits on
the horizon length exist to ensure that the output constraint
sets are nonempty. To see this, consider the following. After
n steps of constraint tightening, given the evolution of the
state transition matrices in (16) and the parameterisation
of the disturbance rejection matrices in (17), the distur-
bance set

⊕n
i=0 Li,σ(k)W is given by

⊕n
i=0

(∏i
j=0(Ã +

Bσ(k+j)Kσ(k+j))
)
W . For unstable subsystems, it is not pos-

sible to find a stabilising K for which Li,σ(k) is convergent.

In view of theorem 2.1, algorithm 2.1 has the interpretation
that the disturbance feedback policy executed by non up-
dating agents at a given time instant is a candidate feasible

solution [11] formed from the tail of the solution obtained at
the previous time step. The scheme requires a conventional
‘synchronous’ solution to initialise the algorithm, as shown
in Figure 1. Agents perform a policy update at intervals of
mT , and apply their candidate feasible solutions at intervals
of T , in between updates. We note that this formulation is
equivalent to a single update formulation of that found in
[11].

Further benefit from multiplexing the MPC controls can be
obtained by employing a multiplexed initialisation. We detail
next an MMPC scheme in which the agents’ feedforward
controls are updated sequentially and held constant over
the period T , with disturbance feedback applied between
successive updates at intervals of T/m. The timing of the
updates is depicted in Figure 1. The complexities of both
schemes are equal, but employing a multiplexed initialisation
permits a higher frequency of policy update, and potentially
improved disturbance rejection.

T

time time

Agent inputs Agent inputs

Fig. 1. Patterns of agents’ input moves for a conventional ‘synchronous’
MPC initialisation (left) and a multiplexed initialisation (right).

Robust MMPC with multiplexed initialisation

This variant of robust multiplexed MPC involves optimisa-
tion over ∆u, so we introduce the augmented state vector
ξk ∈ R8m:

ξk =
[

xk
uk−1

]
, B̂σ(k) =

[
Bσ(k)

Iσ(k)

]

Â =
[
Ã B̃
0 I

]
K̂σ(k) =

[
KT
σ(k)

Iσ(k)

]
.

Given that the disturbances only act on the state, and not the
applied inputs, we can express the disturbance as ŵ, where
ŵ = [w 0]T . The change in control action ∆uj,k executed
by a non-optimising agent j at time k is

∆uj,k =
l−1∑
i=0

Piwj,k−l+i (28)

where, as previously Pi = K(A+BK)i and l is the number
of steps since agent j last performed an optimisation, with
0 ≤ l ≤ m. The dynamics can be described as

ξk+1 = Âξk + B̂σ(k)∆uk +
∑

n∈Nm\σ(k)

B̂nK̂nŵk−1 + ŵk.

(29)



At time k, agent σ(k) = j minimises the cost function

V (k) =
∑
j

N−1∑
i=0

(γ|uj,k+i|k + ∆uj,k+i|k|+ itj,k+i|k)

with respect to inputs ∆uk+i|k for all σ(k + i) = j and
binary inputs tj,k+i|k, subject to the constraint

ξk|k = ξk,

the nominal prediction model

ξk+1 = Âξk + B̂σ(k)∆uk

the constraint on the non-optimising agents, (28), and the
tightened constraints (20)-(23). The binaries tj,k+i|k are fixed
over the sampling interval. We also require the assumption
that the dynamics in the terminal set are not multiplexed.

Proposition 2.1: Given that

ξk+1 = ξk+1|k + ŵk

and the following potential candidate feasible solution for
the change in control:

∆uj,k =
l−1∑
i=0

Piwj,k−l+i (30)

Then
xk+i+1|k+i = xk+i+1|k + Li,σ(k+1)wk.

Proof: The argument largely follows that associated
with the proof of lemma 2.1.

The proof of robust feasibility and finite time completion is
closely related to that of theorem 2.1.

Remark 2.2: We note that ensuring robustness of both the
MMPC schemes outlined is not limited to constraint tight-
ening. An alternative with similar complexity but increased
conservatism would be employing a tube formulation for
robustness [10], [17]. The first robust MMPC scheme would
then reduce to the single update tube formulation employed
by [17], with a different cost penalising deviation from a
target set.

Remark 2.3: As noted in [12], no restrictions are placed on
the choice of feedback controller K. Clearly it is desirable to
reduce the conservatism of the formulation to avoid excessive
constraint tightening. The advantages of choosing a nilpotent
policy are outlined in [12].

III. RESULTS

We present now results obtained from application of the
MMPC algorithm with disturbance feedback in a realistic
constant altitude collision avoidance problem in an Air
Traffic Control (ATC) setting, using a simulator reported
in [8]. The examples were generated using Matlab, with
CPLEX solving the MILP optimisations, and YALMIP [7]
as an interface between CPLEX and Matlab.

The ATC model is hybrid, with continuous dynamics arising
from the aircraft dynamics, and discrete dynamics arising

from the flight plan and Flight Management System (FMS).
A point mass model based on realistic aircraft parameters
is used. The effects of unpredicted wind disturbances are
included in an internal wind correlation model. The FMS
controller is modelled as a 3D -FMS, where along-track
errors are neglected. Further details of the simulator can be
obtained from [8]. Each aircraft is an agent which plans its
own trajectory according to the MMPC algorithm detailed
in 2.1. The sampling interval used is 1 minute, so that plans
are exchanged every time a policy update is performed, every
mminutes, and the disturbances experienced are exchanged
every 1 minute.

The flight plan comprises a reference path of straight lines,
formed from a sequence of waypoints and a sequence of air-
speeds. At each timestep, the MMPC algorithm is executed to
produce a waypoint obtained from the state predictions. This
waypoint is used as a flight plan input to the simulator. The
aircraft state evolves according to the dynamics incorporated
in the simulator model, and the state measurement is used as
input to the MMPC, which then produces a waypoint for the
next time step. The procedure is repeated until all aircraft
have reached their target destinations. The along-track speed
errors are bounded at 1km per minute, and are accounted for
with the wind velocity disturbances in our robustification.

500 simulations were performed with different wind fields
for systems of a number of aircraft. The aircraft are initialised
on the boundary of a circle with a collision predicted to occur
in the absence of corrective action. The aircraft initialisation
speeds are at 454 knots each, and their required minimum
separation distance is 5 nautical miles (nmi). Disturbances
enter in the form of wind velocities obeying a 2σ truncated
Gaussian distribution with standard deviation 5.17m/s. A
maximal prediction horizon Tf of 30 minutes is used.
Representative plots of trajectories obtained with four aircraft
and six aircraft are shown in Figures 2 and 4. The points
displayed are aircraft positions plotted at equal 1 minute
intervals. The initialisation yielding the closed loop response
plotted in Figure 4 is suboptimal, as evident from the path
taken by agent 6. Figure 3 shows the pairwise separation
distances between the four aircraft whose trajectories are
plotted in Figure 2. Statistics of the results obtained are
summarised in Table I. It can be seen that safe separation is
maintained in all cases. The minimum separation observed is
in excess of the minimum threshold of 5nmi, indicating the
offset added to the minimum separation constraint to allow
for discretisation errors was too high. The solution times for
the multiplexed scheme scale favourably, in contrast to the
centralised solution.

IV. CONCLUDING REMARKS

We have presented a novel formulation of robust multiplexed
MPC for application to the control of systems of decoupled
structure, with coupling present in the constraints. By in-
troducing a disturbance feedback policy employed between
updates, robust feasibility properties are retained. Though
attention has been restricted to a specific cost in this paper,
the approach is readily applicable to other cost formulations.
The method has successfully been applied to a realistic ATM
collision avoidance scenario, and the computation time of
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Fig. 2. Trajectories of 4 agents initialised optimally
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Fig. 3. 4 agents, pairwise separation distances. The minimum separation
distance of 5nmi is displayed as a dotted red line.
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Fig. 4. Trajectories of 6 aircraft, initialised with a suboptimal but feasible
solution.

TABLE I
MULTIPLEXED MPC WITH ATC SIMULATOR: STATISTICS

SUMMARISING RESULTS OBTAINED WITH 500 SIMULATIONS

PERFORMED WITH DIFFERENT WINDFIELDS

Number of aircraft
2 3 4

Mean min separation /nmi 16.9 16.0 16.9
Variance min separation /nmi2 0.145 0.291 0.128

Min separation over all sims /nmi 16.2 14.4 16.2
Mean MMPC computation time/stage/s 0.0306 0.0382 0.0514
Mean Centralised computation time/s 0.2143 2.80 20.9

the MMPC has been observed to scale favourably with the
number of agents, in contrast to a centralised scheme.
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