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Abstract— We define the concept of approximate domain
optimizer for deterministic and expected value optimizaton
criteria. Roughly speaking, a candidate optimizer is an ap-
proximate domain optimizer if only a small fraction of the
optimization domain is more than a little better than it. We
show how this concept relates to commonly used approximate
optimizer notions for the case of Lipschitz criteria. We then
show how random extractions from an appropriate probabil-
ity distribution can generate approximate domain optimizas
with high confidence. Finally, we discuss how such random
extractions can be performed using Markov Chain Monte Carlo
methods.

|I. INTRODUCTION

For continuous domains, most of the popular optimization
methods perform a local gradient-based search and in genetlué{1
converge to local optimizers; in some cases, for examp
convex optimization problems, it may also be possible t
guarantee convergence to a global optimizer [1]. By cor
trast, random search methods such as simulated anneal%O
perform a global search and can therefore be considered
a powerful complement to local search methods. Moreov
under certain assumptions it can be shown that simulat 5
annealing algorithms converge to a global optimizer a
the number of steps grows to infinity even for continuou

optimization domains [2], [3], [4], [5]. Little is known alvb

the rate of convergence and the finite-time properties afethe
algorithms, however, unless the domain is finite [6], [7], [8

[9].

(S)

under very weak assumptions on the optimization domain
and optimization criterion this three way approximatiom ca
be used to obtain finite-time performance guarantees for
simulated annealing algorithms over continuous domains.
Moreover, under some additional (but still quite weak)
regularity conditions we demonstrate how our approximate
optimizer concept can be related to more standard approx-
imate optimizers considered in the stochastic programming
literature. This link provides theoretical support for tree of
simulated annealing and Markov chain Monte Carlo methods
for that have been proposed in, for example, [13], [14], [15]
for solving stochastic programming problems.
In Section Il we introduce the approximate domain op-
izer concept and show how it relates to approximate
timizer concepts in the stochastic programming litesatu
heorem 1). In Section Il we define an appropriate sense
n which random variables can be thought of as approximate
ain optimizers and establish a family of probability
ributions that can be used to generate approximate do-
ain optimizers with high confidence (Theorem 2). Then in
g ction IV we present a method for performing extractions
om this family of probability distributions using Markov
hain Monte Carlo (MCMC) methods. Proofs are omitted
in the interest of space. Detailed proofs of all facts can be
found in [16]; a proof of Theorem 2 was reported in [17].

II. APPROXIMATE DOMAIN OPTIMIZERS
Let A denote the Lebesgue measure®fh. The 2-norm

To overcome th|s.shortcom|ng, n th|§ baper we |ntroduc\?vi" be used throughout foR™ and the total variation norm
an approximate optimizer concept, motivated by the concea/t

o . ) ) ill be used for measures. Probability densities are given
of finite-time learning with known accuracy and confidence . .
. e . with respect to the Lebesgue measure. Various Greek letters
used in statistical learning theory [10], [11]. In general

T : ; -~ Wwill be used to denote approximation parameters. To avoid
optimization algorithms for problems defined on continu- bp b

ous variables can only find approximate solutions in ﬁnitéepeatedly stating the range in which they take values, from
(0,1), v € (0,1), 6 > 0,

time [12]. Here we consider three levels of a roximationrJOW on we assume that <
: PP c € (0,1), p€(0,1), ando € (1/2,1). We also assume that

Domain approximation (what fraction of the optimization6 <

L . o > 0.
_dom_eun is better than our candidate Opt'm'zer)’ value apPIO o nsider the optimization criteriobi : © — R with © C
imation (how much better are these points), and confiden Let
(if the candidate optimizer is random, how confident are U* = sup U(6) 1)
we about its domain and value properties). We show that o Zgg '
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U can be either a deterministic or an expected value op-
timization criterion. In the former case for evefy € ©

the value ofU(#) can be computed directly. In this case
the optimization problem (1) is a standard programming
problem. In the latter casé&(0) is given as an expected value
over a random variable whose probability distribution may
also depend oi. More formally, we assume the existence
of a random variable taking values in a seX, according to



a family of probability measure®(dx; #) parameterized by will use

6 € ©. We further assume thé&t(6) for each value o € © 2 .
can be written as an expected value over the correspondi%e’ a) =10 €O MO O|U®)>U0)+e} <ar(O)}

probability measure to denote the set of approximate domain optimizers with
value imprecisione and residual domaim. Note that for
U(o) :/ u(z,0)P(dw; 0) all e and all o, if ©* # () then ©* C O(¢, a); moreover,
reX O(e,a) # () even if ©* = (.
for some functionu : X x © — R. In this case the opti- A more common notion of approximate optimizer is the

mization problem (1) is a stochastic programming problenfollowing.

We assume throughout tha{z,9) and P(dx;0) are such Definition 2 (pproximate value optimality): A poirtt €
that the expected valug () is well defined for allf € ©.  © is called an approximate value optimizer with imprecision
In such problems it is usually not possible to complit@) ¢ if and only if U (6) < U(0) + ¢ for all § € ©.

directly, either because evaluation of the integral rezgiir This notion is commonly used in the stochastic programming
too much computation, or because an analytical expressiterature (see, for example, [20], [23]) and provides adir
for P(dxz; ) is not available; for example, [18], [19] presentbound on the optimal value. We will use

applications in air traffic management and systems biology . A A

where P(dz; ) can only be sampled by simulation. In the O (e)={0€0[¥9€0, UWO) <U®) +¢}

particular case that’(dz;¢) does not depend of, the to denote the set of approximate value optimizers with
optimization task is often called “empirical risk minimiza imprecisione. Once again, for alk > 0, if ©* # () then
tion”, and is studied extensively in statistical learnihgary o+ C ©*(e), but ©*(e) # 0 even if©* = (.

[10], [11]. The results of this paper apply equally to the One can see that approximate value optimality is a stronger
optimization of deterministic and expected-value craeri concept than approximate domain optimality, in the sense
We will consider the optimization problem (1) under twothat for all ¢ and «, O*(e) C O(¢, ). Conversely, however,
separate sets of assumptions. given an approximate domain optimizer it is in general not

Assumption 1:© is Lebesgue measurable and boundegossible to draw any conclusions about the approximate
(i.e. A(©) < 00). U is Lebesgue measurable and bounded.value optimizers. A relation between domain and value
This very weak assumption will be a standing assumption faipproximate optimality can, however, be established under
all results. The approximate domain optimizer results wilAssumption 2. Lef" denote the gamma function.
hold vacuously ifA(©) = 0 so we will mostly be interested ~ Theorem 1:Under Assumption 2, i) is an approximate
in the case\(©) > 0. Without loss of generality we will domain optimizer with value imprecision and residual
assume that/(#) € [0, 1] for all 6 € ©. domain o then it is also an approximate value optimizer
nel;c(;rééf)me results a somewhat stronger assumption will Bgin imprecisione + % [%r (%)] n [a)\(@)]%_

Assumption 2:0 is compact and Lebesgue measurable. Ill. RANDOM DOMAIN OPTIMIZERS
U is L—Lipschitz continuous. We now examine how randofhe © extracted according
Conditions onu(z,) and P(dzr;0) to ensure that/(f) to some probability distributio ~ 7(df) can be thought
is Lipschitz can be found in [20]. It is easy to see thabf as domain optimizers. The natural interpretation is yo tr
Assumption 2 implies Assumption 1 and also the existenae ensure that the probability with which the extractedre
of a global optimizer. approximate domain optimizers with value imprecisicand

Definition 1 @Approximate domain optimality)d € © is  residual domainy is high enough; in other words, establish
called an approximate domain optimizer (with respect to tha lower bound on the measure of the 8¢t, o) with respect
Lebesgue measure) with value imprecisiorand residual to the probability measure(df).

domaina if and only if A. Proposed distribution family

MOeO[UM0)>U(0)+ e} < aXO). We consider a family of probability distributions
In words, this optimality concept provides a bound on the:(de; .J, §) parameterized > 0 andé > 0.
Lebesgue measure of the set of points thateabetter than Theorem 2:Consider the distributionr(d;.J,6) o
our candidate as a fraction of the Lebesgue measure of thie(4) + 5]J A(df) with J € N andé > 0. For alle, o we
entire domain®. This notion of optimality is motivated by have that

the work of Vidyasagar on statistical learning theory [10], 1

[11] and especially its application to automatic contralpr m(O(e, a); J,6) > -

lems [21], [22]. The main difference is that in the work of 1+ [e}rﬂgd] [é s 1} 40
Vidyasagar measures other than the Lebesgue measure loe a proof of the theorem and a discussion of its impli-

allowed (typically probability measures used to sample theations see [17]. Notice that, by constructiaridd; J, ) is
spaceO). We will only consider the Lebesgue measure herebsolutely continuous with respect to the Lebesgue measure
hence will drop the phrase “with respect to the Lebesgueith densityp(8; J, ) « [U(0) + 6]‘]. Intuitively, parameter
measure” whenever we refer to this optimality concept. Wd determines how concentrated the distributiefld; J, 6)



Fig. 1. Example of the effect of exponedit The top left plot show#/ ().
The remaining plots sho{l/(9) + 6]7 for § = 0.5 and J = 3 (top right)
6 (bottom left) and20 (bottom right) respectively.
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Fig. 2. Variation of the “optimal’§ and the corresponding with respect
to ¢, a, ando. Two of the three parametets «, o are kept constant for
each row, sette = 0.1, « = 0.01, o = 0.99. Notice the rapid growth of
J ase — 0 and the mild growth agx — 0 ando — 1.

will be around the global optima @f (9) (see Figure 1). The
parameters can be thought of as the amount of Lebesgu
measure (uniform distribution) one adds &&(f) before

sampling. The presence of at least some uniform distributio

is required for technical reasons in the proof of Theorem SPpre : .
Exactly how much is up to the designer, however. To obtaiﬁ”te”a' More importantly, because(dv) is used both to

some insight on this choice it is instructive to turn the bdbun
of Theorem 2 around, to provide a lower bound @nto
ensure that € O(e, o) with high enough probability.

Corollary 1: Considerc € (1/2,1). n(0(¢,a); J,0) > o

as long as
7> 1+e+4 L:Og o —|—1ogl—|—2log1+6
€ l1—0 ! )
It turns out that the bound given fo/ in Corollary 1
admits a unique minimum foé as a function ofw, o and
€ [16]. Figure 2 shows this value @f and the value of the
corresponding bound.

If the optimization criterion is Lipschitz continuous,
Corollary 1 can be used together with Theorem 1 to derive
bounds on the probability that & extracted according to
w(df; J,6) is an approximate value optimizer with a given
imprecision.

B. Related methods

M. Vidyasagar [11], [21] proposed a fully randomized
algorithm for obtaining approximate domain optimizershwit
respect to a general probability measui(@®6) (not just the
Lebesgue measure considered here). The idea is to extract
N independent samplés, . .., 0y according tor(df) and
K independent samples, . .., xx according toP(dz) and

set
K

. ) 1

Oy = arg nin oo Zl u(z;, 0;). (2)
J:

Notice thatdy is again a random variable, due to the random

extractions ford andz. Under minimal assumptions (close

to our Assumption 1) it can be shown that if

log —2—
N > gl;” andKzinnﬂ, ©)
0g 7= 2e l1-0
then A
{0 e |UW0)>U0)+¢} <a (4)

with probability at least. Here “probability” is taken with
respect to the product measur& x PX for the independent
extractionsf,,...,0y,21,...,2x. The total computation
necessary to obtaifi, is proportional toN + K plus the
amount of time needed to solve the optimization problem (2),
which is linear inN K. Similar (potentially tighter) bounds
can be obtained if the family of functiors.(-,0) | 8 € ©}
has the Uniform Convergence of Empirical Means property.
This approach is clearly related to the approach proposed
here, but it is much simpler to implement and much easier
to analyze from a computational complexity point of view.
Notice, however, that the measure of the set of points which
are ¢ better than the candidate optimizer is taken with
respect torr in (4) as opposed to the Lebesgue measure
in Definition 1. Since the search distributianis arbitrary
‘(edesign choice), this makes it difficult to prove resultelik
Theorem 1, linking approximate domain optimizers with
pproximate value optimizers, even in the case of Lipschitz

sample fromP and to assess the measure of the set of points
that are better than the obtained solution, one runs the risk
of (4) becoming a self fulfiling prophecy. A myopic search
strategy that samples only a small part of the space may end
up looking good from the point of view of equation (4), but



Algorithm 1 (MCMC for deterministic criteria)

would leave large parts ¢ with potentially high values of initialization

U(#) unexplored. Selectdy € ©
Setk =0
) ) repeat
In terms of the necessary computation, the bound in Extractd ~ g(0]0;)
Corollary 1 scales more slowly than (3) with respecteto = mi 9Ok 10)[U©®)+3]"
y Y 3) P Setp = min {1, £FLRECH }

(1/e as opposed td /e?). The growth with respect ter
and« is comparable. Note, however, that the bounds of (3)
effectively include all the necessary computations, siee
cost of solving (2) is small. By contrast, the boundsjoonly

tell part of the story, since the cost of extracting a sample
from the distributionr(df; J, d) is not included. We address
this issue in the next section.

Setf, 1 = { zk w.p. p
1

w.p.1—p
Setk =k +
until True

TABLE |

In the stochastic programming literature, several other |V. GENERATION OF RANDOM DOMAIN OPTIMIZERS
methods have been proposed for obtaining approximate value USING MCMC

optimizers. Most of these methods [24], [20], [25], [23]yel  Now let us turn to the question of how to generate random
on random extractions frodf?(dz; §) which are used to esti- exiractions according to the distribution required by Theo
mate eithelU or its gradients, followed by a structured searchem 2. This can be done using Markov Chain Monte Carlo
over the spaced. Drawing a direct comparison between\icMC) methods, by coding the desired distribution as the
these methods and methods based on randomly sampling §&tionary distribution of a Markov chain. Algorithms | afid
parameter space is not straightforward, however, sincesomjiow one to generate samples from the resulting chain for
methods require solving an additional optimization probgeterministic and expected value criteria respectivedfice
lem [24], [20], others require computing sub-gradients],[25 that (unlike Theorem 2) Algorithm 1l only applies to the case
[23], others require extracting from complex distribuBon \yhere.s > 1 and integer. Much more efficient algorithms for
etc. The above discussion can lead to some insights about §gnpling the desired distributions are of course available
relative merits of the different approaches [16]. See &€ [ A|gorithms | and Il are listed here only to illustrate howshi
for a different class of randomized optimization methods;an pe done and because they lead to simple statements of
geared primarily toward deterministic, convex problems. ipe subsequent results.
Algorithm | is the Metropolis-Hastings algorithm for gen-

In terms of applicability, the approach based on extrastiorerating a Markov chain with stationary distribution whose
from 7(d6; J,5) and the approach of Vidyasagar apply todensity function is proportional toU(#) + 5]”. The same
very general optimization criteria, provided one is wijin property for Algorithm Il was shown for expected value
to live with approximate domain optimizers. The approaclariteria in [13], [14], [15]. Both algorithms maintain asap
of [24], [20] applies only to Lipschitz criteria. It does, of the) state a valu#, € ©; in addition, Algorithm II
however, also require one to solve an additional optimizalso keeps track of an estimaté;,, of the value ofU at
tion problem constructed through Monte Carlo extractiong)z. At each loop they make use of a proposal distribution
which is likely to be generally feasible only under convexit with density g(6|6;) to extract a new candidate € ©.
assumptions. The same is roughly true for the approadie candidate is then accepted or rejected with a probgabilit
of [25], [23]. These approaches (as well as the approadhat relates to the relative value bf(6) and U (6) and the
of [11], [21]) also appear to be limited to the case whergelative likelihood off and @, with respect tog(-|-). Notice
P(dz;0) does not depend o#, though in some cases thethat for implementation purposes, densities need to be know
extension to more generdP(dz;0) is straightforward, at only up to a constant.
least conceptually. Our approach can deal with the generalLet 74 (df) denote the probability distribution of the"
case P(dz;0) by construction, as we will see in the nextstep of the Markov chain and recall that the stationary dis-
section; being able to deal with this case is crucial in éertatribution of the chain has density(6;.J,8) o [U(6) + 6]”.
applications, including those presented in [18], [19]. &y The following fact [17] is immediate from the definition of
subtle difference is that the approach proposed here and tihe total variation norm.
approach of Vidyasagar require one to sample bth © Theorem 3:Let 6;, with distribution 7, (df) be the state
andz € X, whereas the stochastic programming approache$ the chain generated by Algorithm | or Il and assume
of [24], [20], [25], [23] only require sampling € X. This J respects the bound of Corollary 1. Then the statement
may cause additional complication for the former method$g,. is an approximate domain optimizer &f with value
depending on the shape of the $@tand the distribution imprecisione and residual domain” holds with probability
used to sample from it. However, similar problems mawt leasto — |7 (df) — p(8; J, d)]|.
be encountered when solving the follow-on optimization Standard results in the theory of Markov chains [27], [28],
problem with the approach of [24], [20] or when computing29], [30], [31] allow one to establish conditions under wihi
sub-gradients with the approach of [25], [23]. a Markov chain converges to its stationary distribution. In



Algorithm 2 (MCMC for expected value criteria) Markov chain (}/ above)
o .

initialization ) )
Selectfy € © In some cases this strategy can produce approximate
Extract independent; ~ P(de,00),i=1,2,...,J domain optimizers very efficiently. One such case is when
gg:g‘):onz‘:l[“(“’eo) +9l the optimization criterior/ () has a “flat top”.
repeat Proposition 1: Assume that\(6*) > SA(©) > 0 for
Extractd ~ g(6]6,) i someg € (0,1). If K > 122%&10;3) and
Extract independent; ~ P(dxz,0),i=1,2,...,J
7 =177 ) 1 é 1 146
ie:U_ HZ:ll[u(iZe’jzng&] J> 2 g : 7 tlog- +2log
ep_mm{7m}~ € — 0 «
Set (041, Ups1) = { EZ’U& ) x-g-i’_ , thenm,(O(e, ) > (1 —~)o for all k > K.
Seth = k41 ok o It is interesting to note that the “flat top” assumption also
until True ensures that, under weak regularity conditions dn(ef-
fectively Assumption 1 above), the distribution generated
TABLE |I by simulated annealing algorithms ((; J, ) in our case)

converges asymptotically (a8 — oo in our case) to the
uniform distribution over the set of global optimize®s [2].
With the bound of Proposition 1 in place we can do a
this case, the last term in Theorem 3 will tend(t@s % rudimentary complexity analysis for the computationabsff
tends to infinity. Therefore, after an initial burn in perjod necessary to obtain approximate domain optimizers using
Algorithms | and II will approximately generate approxirat Algorithms | and I1. In particular we will count the number
optimizers. In some cases it is also possible to determig® random extractions necessary. In this sense, genetatng
the rate of convergence. The simplest such case is whggxt state of the Markov chain for Algorithm 1 is roughly
the proposal distributiory(6|6)), used in the algorithms is the same cost for alf (two random extractions necessary,
independent of the current stafg; in this case we simply one ford and one for the accept-reject step). Therefore, the
denote its probability density function by6). The following  total amount of work one needs to obtain an approximate
is taken from [32]. domain optimizer for a deterministic criterion is proportal
Theorem 4:Assume that there exisfg > 1 such that for to K, and hence |Ogarithmic with respect $oand 8. The
all 6 € ©, p(6;J,6) >0, g(6) > 0, andp(6; J,5) < Mg(6). cost appears to be independenteofind ., but these two
Then||w(-; J,8) — me ()] < (1 — ﬁ)k parameters will enter in the powef to which we need to
The following fact follows immediately. raiseU () in the calculations.
Theorem 5:Assume that there exisfg > 1 such that for For an expected value criterion, the computational cost for
all 6 € ©, p(6; J,0) >0, g(d) >0, andp(6; J,§) < Mg(f). generating the next state of the Markov chain in Algorithm Il

Then is proportional taJ+2 (one extraction fo#, J for thez, and
1 1 \+ one for the accept-reject step). Therefore the total amofunt
k[0, )] > (1 - M) computation needed is of the orderif .J +2), which scales

= 7 -
146 1148 146 ; .
1+ | 5 {E 1| 42 rather well (the worst growth rate is/e with respect to the

The conditions of Theorem 4 are easy to meet in our caséd!ue imPrecisiop). o _
We can select the proposal distribution such thét) > If the “flat top” condition is not met, however, it can be
0 and, by construction, we also have tha®;J,5) > 0. easily seen that the above strategy based on the uniform
Moreover, becaus¥ is assumed to be bounded, if we selecProposal distributiq@(@) can lead to very S|0V‘_’ convergence
g to be the uniform distribution ove®, then the condition of the Markov chain as the following proposition suggests.

of Theorem 4 will be met for an appropriately large. Propositiqn 2:Let m, denote the distribution of the
This suggests a simple strategy for obtaining an approeimat!arkov chain at ste:. If

domain optimizer with a given value imprecisiena given 1+6\7 1

residual domairnx with a high enough probability: k= (—> 1 7_0

1) Selects and~ such that(1 — v)o > p.
2) Selectd andJ using Corollary 1.
3) Run the Markov chain witly the uniform distribution

then (5 J,6) — m()]| < 7o
Even though this is only a sufficient condition it suggests
log(70) that the number of steps that the Markov chain needs to

over® for k > log(1—4) steps. converge to withimyo of the desired stationary distribution

Then the subsequent states of the Markov chain will bgrows exponentially ir/. In particular, if we use the value of

approximate domain optimizers with value imprecisiaand J established in Corollary 1 and assume that all logarithms

residual domaimy with probability at leasf1 — v)o > p. are taken with basél + §)/6 to simplify the formula, the

Notice that we have introduced one more design parametsufficient condition becomes

~, to determine how much of the probability of obtaining an gy AEets

approximate domain optimizer is attributed to the selectio k g (ﬂ) log L'

of J (¢ above) and how much to the convergence of the “\a(l-0)\ ¢ yo




The problem here is the implicit dependence of the convejto] V.N. Vapnik, The Nature of Statistical Learning Theprfambridge

gence rate on the exponest This is due to the fact that if
A(©*) = 0 then the stationary distribution of the chain not*H
only becomes “sharper” a$ increases, but the peak of its
density function also goes to infinity. Hence the mismatcH2
(encoded byM above) between the stationary distribution[13]

of the chain and the uniform proposal distribution used

for searching the domai® also goes to infinity. It is
also interesting to note that in this case the asymptot'[@4]
convergence / — oo) of simulated annealing algorithms

can be proven only under additional regularity assumption[%]

(typically differentiability) onU [2], [3], [4], [5].

V. CONCLUDING REMARKS

[16]

We presented a series of results aiming to provide the-
oretical support for the use of randomized methods for

optimization, both in a deterministic and a stochastidrsgtt

[17]

Our main results allow us to provide finite sample guarantees
for simulated annealing type algorithms for optimizatimeo
continuous domains (Theorem 2) and link these bounds !
the computation of approximate optimizers in a stochastic
programming context (Theorem 1). We also discussed how

extractions from the necessary distributions can be gébra

using MCMC methods (Theorem 5).
For certain combinatorial optimization problems (where

the optimization domain is finite) it has been shown th
allowing the value ofJ to increase along the computation

[19]

3oy

(simulated annealing) leads to better performance thap-kee
ing it constant [33]. In our case this would imply designing[21]

an “annealing schedule” to changk as the computation

progresses. Current work concentrates on the developmé&#
of such annealing schedules. In addition to general pur-

pose schedules that can operate under weak assumptigi$ vu. Nesterov, “Primal-dual subgradient methods famex problems,”
(like Assumptions 1 and 2 above) we are also looking to
exploit any available structure (for example differentiigp
or convexity) to improve the computational performance of

the methods. The extension of the results to unboundé&ib]

optimization domains is another area of current research.

(1]
(2]
(3]

(4
(5]

(6]
(7]

(8]
El
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