Stochastic Hybrid Processes as Solutions
of Stochastic Differential Equations

Estimation of Rare Event Probability in
Stochastic Hybrid Systems

:‘:

Jaroslav Krystul, Henk A.P. Blom and Arunabha Bagchi




Outline

e Introduction
e Classical SDE models
e Stochastic Hybrid Systems
e Model by Ghosh and Bagchi

e Models by Krystul and Blom

o Estimation of rare event probability in stochastic

hybrid systems




Stochastic Differential Equation

dXt — G,(Xt) dt -+ O'(Xt) th, ==
X(0) = X,

{Wy,t > 0} is the standard Brownian motion.
a(-) : drift coefficient and b(-) : diffusion coefficient

Solution : existence and uniqueness; under “Lipschitz” and
“Growth” condition

(L) a(z) —a(y)|® + [b(z) = b(y)|" < K|z —y|*
(G) a(@)]* + [b(z)]* < K|z|”




SDE: Strong solution: Properties

1. Continuous path

2. Semimartingale : X () = Xo + A(t) + M ()
A(t) is of bounded variation, M (t) is a Martingale.
— Important for mathematical analysis (well developed theory)

3. Markov: D (X (t)|Fs) =D (X(t)|X(s)), t>s.
Transition prob. : p(s,x,t, A) = P(X(t) € A| X (s) = x)
Time homogeneous : p(s,z,t, A) = p(0,x,t — s, A)
= D (X (t+ s)|Fs) = Dx(s) (X(2))-

Strong Markov :

D(X(t+ 7)|Fr) = Dx () (X(t)), T stopping time
— Helpful to analyse processes stopped at random times




Jump Diftusion Process

e Extension while keeping Semimartingale property?
e Discontinuous paths?

Jump Diftusion Process :
dX; = a(X:)dt + b(Xy) dWy + h(Xy) dNg, t>0
{N(t)} : (pure) jump process.

Alternative representation:

dXt — CL(Xt) dit -+ b(Xt) th -+ / g(Xt_, U) p(dt, dU)
R

p(-,-) Poisson random measure associated with the jump process.

Solution: existence, uniqueness under Growth and Lipschitz
condition on a, b and g.

Properties : Semimartingale, Markov, but Discontinuous




Stochastic Hybrid Systems

Further extension : Not only the process but also the governing
model/equation jumps.

— or Hybrid model.
Model I (Ghosh & Bagchi):
(X;,0;) e REX M, M= {1,...,NY}, t >0

dXt — CL(Xt, (975) dt —+ b(Xt, (915) th = / g(Xt_, Ht_, U) p(dt, dU)
R

P(et—l—& — _]|6)t — i,XS,HS,S S t) — )\’L](Xt)5t —|— 0(5t), Z #']
X(0) =X, 6(0) = 6

p(+, -) — Poisson random measure with intensity dt x [(du)
\ij(-) >0, i#j,i,j=1,2,...N and 0" \i;(-) =0




Hybrid Systems - Model 1

Assumptions :
* a(-,1), b(-,%) are bounded and Lipschitz continuous
* )\;;(+) are bounded and measurable

* Support of g(x, 0, u) wr.t. ‘U’ (i.e., the proj. on R) is bdd.

Existence of Solution: (Put in Ito-Skorohod’s framework)

Identify ¢ with e;, 7th unit vector in R" and embed M into R”. For
r € R?, define A;;(x) to be the consecutive (with lexicographic

ordering on (7, 7) € M x M) left closed right open intervals on R
with length \;;(z).

Definec: R* x M x R — R as

c(x,i,u) =e; —e; if ue A;j(x), O0otherwise.




Hybrid Systems - Model 1

Model can be expressed as

dXt — CL(Xt, (975) dt —+ b(Xt, (975) th + / g(Xt_, Ht_, U) p(dt, dU)
R

df; = / c(X¢_,0;_,u)p(dt,du), t>0
R

X(0) =X, 6(0) =6

and the existence of unique strong solution can be shown.

Remarks :
* Conditions on the coefhicients can be relaxed
* {X ()} is not Markov
* Augmented process (X (¢),0(t)) is Markov




Hybrid Systems - Model 1

Let U; and Us denote respectively the supports of g(z, 6, u) and
c(x,0,u) wr.t. ‘0’ (i.e. the projections on R).

Different situations can arise:
I. Process jumps but no switching: w € Uy \ Us

II. No jump in process but switching occurs: « € Uy \ Uy

[11.Simultaneous switching and jump (Hybrid Jump): « € U; N Us




HVbI‘ id Systems - Model 2 (Krystul and Blom)

X, = a(X,.0,) dt + b(X,.0,) dW, + / 01 (Xo— Oy 10) qu (dt, du)

mn

| / 02( X0 0, ) pa(dt, du)

do; :/ c(X¢—,0i_,u)pa(dt,du), t>0

* IV is an m-dimensional standard Wiener process.

* ¢1(dt,du) is a martingale random measure associated to a
Poisson random measure p; with intensity dt X m1(du).

* po(dt, du) is a Poisson random measure with intensity
dt X mao(du) = dt x duy X u(w), p is a probability measure on R" ™1,
u1 € R
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Hybrid Systems - Model 2

Assumptions :

* Lipschitz condition. Forall: =1,2,... N

a(z, €;)*| + [b(z, ;)] +/ 91(, €5, u)[*ma(du) < K(1+ |2]?).

mn

e (Growth condition:
a(z, e;) —a(y, e;)]” + |b(x, e;) — b(x, €;)]°

+/ \91(513767;,“) - 91($,€iau)|2m1(du) < Kr|33 = 9\2-
for x| < r, |y| < 7.

* )\;;(-) are bounded and measurable

* Support of gs(x, 0, u) wr.t. ‘u;’ (.e., the proj. on R) is bdd.
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Hybl‘ id Systems - Model 3 (Krystul, Blom and Bagchi)

Idea:

X, starts in some set E* and (X4, 6;) evolves according to some

[to-Skorohod SDE.

It X; reaches a boundary of that set, the process immediately
jumps to a new set FJ ( possibly including jump in 6 )

Process continues again according to the Ito-Skorohod SDE in a
new set until it reaches the boundary of the current set.

L
15 ={e|we 5" forsomeizl,...,L}:UEi
i=1

L
Ve =z e forsomed=1 . JL}= U@Ei
i=1
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Hybrid Systems - Model 3

(X:,0;) e REx M, M={ei,eq,...,en}
Suppose 7 < T4' < -+ < T2 < .... are the successive hitting times
of OF.

Between the boundary jumps { X;, 6, } is a switching jump-diffusion
process. For 7 <t <75,

t

4
X, = X, + / a(X..0.)ds + / b(X..0.)dIV.

Tm

t
+ / / 92(X8—798—7u)p2(d8’du)’

"

t
0; =0 & —I—/ / c(Xs_,0s_,u)pa(ds, du).
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Hybrid Systems - Model 3

At jump points (¢t = 7,,,),

XTWL?L — fx(XTT%—aHTE—az)a

97'”12 — fe(XTT%_,QTE_, Z)7

m

where Z is some V-valued random variable,

f* OExMxV — FE,
9 0FE xMx V — M.
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Hybrid Systems - Model 3

Assumptions :

a and b satisty Lipschitz and Growth conditions
Aii(+) are bounded and measurable
Support of go(x, 6, u) wr.t. ‘uy’ (i.e., the proj. on R) is bdd.

Function g» has the following property: (z + g2(z,0,u)) € E for
eachze ", 0cM,ueR”,i=1,...,L

d(aEa fx(aEleL V)) > Oa

i.e. when { X;} has reached the boundary OF it always jumps
inside of open set F.

15



Estimation of rare event probability in
stochastic hybrid systems

(X:, 0, eER* x M, M= {ey,...,es)
switching diffusion process:
dX, = a(6y, X,)dt + b(0,, X;)dW,,
POiys =010 =n, X: =) = A\pg(x)d +0(d),n # 0.
(X¢,0¢) startsat t = 0 in Dy C R™ x M with known initial
probability distribution Px, g, (-).

T4 = inf{t > 0: Xy € A} : hitting time of A C R™, AN Dy = 2.

To calculate P(74 < T') : probability that X; will reach the set A
in the time interval (0, 7).

Using crude Monte Carlo to estimate P(74 < T') may require a
huge number of simulations. For events with probability of the
order 1071V | often 10'! or more Monte Carlo simulated

trajectories are needed.
16
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Factorization Approach

Idea : Identify intermediate states that are (sequentially) visited
much more often than the rare target set.

Dy initial set;
D13"'3Dm_1DDm:ACRn; Do ND =@.
Define for k = 1, ..., m, stopping times 7y 2 inf{t >0: X; € D}

P(ta <T)=P(1, <T)
=Py, <T,7pp1 <T,....,70<T)

— H P(ri, <T|me—1 <T).
k=1

Individual probabilities on r.h.s. are not very small.

Ly
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Nested sequence of level sets

Dy initial set; Dy D --- D> D,,—-1 DO D,,=A; DygnNDy =0.
Plta<T)=]],—; P(re < T|1—1 < T).
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Factorization Approach (continued)
)
P(ra <T) =l P(ri < Tlme—1 < T)=| Ty

To calculate v4’s we proceed as follows: J

Define Sk = (XTk/\T7 HTkAT)ﬁ
Wk(B):P(kaB‘TQ<T,...,Tk<T), B C R™ x M,
pe(B) =P, € Blro <T,..., 7,1 <T)

{(X%,0:)} strong Markov = {&} is a Markov (chain)




Factorization Approach (continued)
)
P(ra <T) =l P(ri < Tlme—1 < T)=| Ty

To calculate v4’s we proceed as follows: J

Define fk = (XTkAT7 QTkAT)a
Wk(B):P(SkEB‘T@<T,...,T}C<T), B C R™ x M,
pe(B) =P, € Blro <T,..., 7,1 <T)

{(X%,0:)} strong Markov = {&} is a Markov (chain)
B = [ Poie,, (BIm(do).
R™ xM

. (B) L P(kaB,T()<T,...,Tk<T) L P(ngBﬂDk,To<T,...,Tk_1<T)
k —  P(ro<T,....m<T) P(ro<T,.... 7 <T)

P(&,€BNDy|mo<T,...,7—1<T) fB I{geDk}pk(df)
(P <T[ro<T,.... -1 <T) ) fRanI{ﬁeﬁk}Pk(dE)

Dk = D, x M \L Tk = fRan I{SEDk}pk’(d‘f)j
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Factorization Approach (continued)
)
P(ra <T) =l P(ri < Tlme—1 < T)=| Ty

To calculate v4’s we proceed as follows: J

Define &k = (XraT, OrnT),
mw(B) =P € Blto<T,...,7. <T), B CR"x M,
pr(B) =P € Blro<T,..., 7,1 <T)

{(X%,0:)} strong Markov = {&} is a Markov (chain)

Evolution of the flow {7, px,vx; k =0,1,...,m} is described by
the following diagram:

prediction update
Tk—1 - Pk ——— Tk
Tk

with initial condition 7y (d§) = Pe, (d§) = P(& € d§).

19



Interacting Particle System (IPS) approach

An approximating sequence {7y, Pr, Vi k= 0,1,...,m}:
N prediction update .
Tk—1 Pk ———— Tk
Yk

Approximations in the form of weighted empirical distributions
associated with the particle system {&!,w?! }:¥ ;:

N

N e =
R : oA 1§, €Dx } |
mom Ao =) widgy TR ) o g
i=1 1=1 £uj=1"k"{& €D}

N N
Pk~ Pi = wa{g,i}a Vi R Yk = Zw}il{g;em}-
i=1 i=1

20
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IPS algorithm

Step1: At t =0 choose N particles {£,7=1,... N} from

Px, 8, = 70, equivalently;, 7y = Zfil wéé{gé}, wh = -
A
A M
D,
| LA
DO EDQ I

N

s

21
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[PS algorithm (continued)

Step 2. Prediction step: mp_1 — px

. N . . .
Given 71 = Y.L, w0 {¢i 3. 1.e., aweighted particle cloud

{(fli—pw/i—ﬂﬂ =1,. --N} with 512—1 S Dk—la

Let particles evolve following the hybrid system equations until
D:. or the final time 7T is hit.

é,’g : Value of the i-th particle at the end of the step
Pr = Zi\;1 w};_15 (i1 is the approximation of pj.
k

Recall that:
pe(B) = P(§x € Blto <T,...,7k-1 <T), BCR" x M

22
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[PS algorithm (continued)

.SA}; : Value of the i-th particle at the end of the prediction step

Pr = fo\; Wy, _10 (i1 is the approximation of py.
k

> B
D,

©
i
k:
'3>
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[PS algorithm (continued)

Set wj, =0, if X! ., ¢ Dy, otherwise W} = wj,_;.
Approximate vy = P(1x < T|1—1 <T) by A, = Z,fil we.

Stop algorithm if 45, = 0,and P(14 <T) = [[,—; % = 0.

.
oS

“
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[PS algorithm (continued)

Step 3. Updating step: pr — 7y

Approximate 7, by 7, = Z,ﬁil @,25{@ , with W = u?,ffc/ Zi\;l we.
k
Recall that: m(B) = P(éx € Blro < T,...,7: <T), B CR"™ x M.

To avoid carrying the particles with no weight, resample NV
particles from 7.

The new set of particles is {¢}, w} }.Y ; with w}, = ~.

(o to Step 2.

25
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[PS algorithm (continued)

k=k+1




[PS algorithm (continued)

Atstage k =mweget P(ty <T)=~][,_, Y.




Theorem (Cerou, Del Moral, LLeGland and Lezaud, 2002)

IPS estimator is unbiased, i.e.

[ y{j} — P(14 <T) = Pu(0,T)
k=1

and

m m 1 b
el ) <2

for some finite constant a, which depends only on the
parameter p, and for some finite constant b,, which depends
only on the parameter m.

28
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Diftusion Example: Geometric Brownian Motion

dXt (,u —|— )Xtdt -+ O'Xtth, XO — X
Probability of hitting level d before time 7" :
P(TdST), Tdéinf{t>02Xt2d}.

* In(d/x)

0 V2mo3s3

—(In(d/x) — ps)* L

Analytical solution: expy 952

1PS -
* u=1,0=1,29 =1, varyingd < 3550

* intermediate levels d; ’s are chosen experimentally;
40%—55% of particles starting at D,_; reaches D,.

* 1000 simulations of 1000 particles each
1000 i
Ph?lt(ov T) 10()() Z (Hk: 1 k)( )

29
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Probability to hit level d before time 7" = 1: diffusion

Probability

10

~14

-8+ Analytical solution
—— |IPS [1]
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