Flight-deck Technology for Trajectory-Based Self-Separation

Overview of the NASA Autonomous Operations Planner (AOP)

Frank Bussink National Aerospace Laboratory, The Netherlands Formerly, National Institute of Aerospace, USA frank.bussink@nlr.nl

David Wing NASA Langley Research Center, USA david.wing@nasa.gov

Tutorial on Airborne Self Separation, 4th International Conference on Research in Air Transportation, June 1-4, 2010, Budapest, Hungary

Research Prototype Automation System NASA Autonomous Operations Planner (AOP)

- AOP System Interfaces
- Conflict management
 - Probe multiple maneuvers for situation awareness
 - Conflict detection and resolution details
 - Intent-based and state-based approaches
- Maneuvering without conflict (conflict prevention)
 - Provisional ("what-if") planning
 - Maneuver restriction bands
- Flexibility planning
- Accomplishments

AOP System Interfaces

Tutorial on Airborne Self Separation, 4th International Conference on Research in Air Transportation, June 1-4, 2010, Budapest, Hungary

- Probe all relevant maneuvers (trajectories) requiring evaluation by flight crew
 - Display all conflicts to provide complete situation awareness
 - Provide resolution capabilities for each maneuver
- AOP can simultaneously predict/evaluate multiple ownship maneuvers
 - Maintaining current guidance (Commanded Prediction)
 - Evaluate impact of current guidance settings
 - "What happens if I don't change the guidance settings?"
 - Reconnecting to strategic route (Planning Prediction)
 - Advise & evaluate maneuver to re-establish FMS active route
 - "How do I get back to my long-range plan?"
 - Stop maneuvering (State-vector projection)
 - Evaluate impact of maintaining current state
 - "What happens if I stop or don't start/continue maneuvering?" (e.g., blunder)
- Not all maneuvers always relevant

Example: Aircraft Approaching Top-of-Descent (TOD)

Conflict Management Maneuver Probing

- Primary conflicts on the commanded prediction
- Secondary conflicts on planning and blunder (state-vector) predictions

Off path Within capture

LOS – loss of separation

Conflict Management: Conflict Detection & Resolution

- Intent-based conflict detection
 - Conflict detection
 - Trajectory prediction uncertainty buffers
 - Trajectory prediction
 - Ownship
 - Traffic
- Intent-based conflict resolution
 - Strategic & tactical
- State-based CD&R

Conflict Management Intent-Based Conflict Detection

- 1xN probing of ownship versus all hazards (traffic and area)
 - Probes ownship 4D trajectory against all traffic aircraft 4D trajectories and area hazard geometries
- Configurable research parameters
 - Required separation zone
 - Independent values for AFR & IFR traffic
 - Look-ahead
 - Typically 10 minutes
- Uses prediction uncertainty bounds
 - Independent definitions for
 - ownship and traffic
 - different maneuvers (flight modes)
 - Conflict = predicted loss between uncertainty regions

Conflict Management Intent-Based Trajectory Prediction

Ownship

- Generated from avionics and guidance settings
 - MCP, FMS, FCC, MCDU settings
 - initial condition from sensors
- Numerical integration
 - FMS quality trajectory prediction for all guidance modes
- One trajectory generated for each intent-based CD
 - Commanded
 - Planning

Traffic

- Generated from ADS-B data
 - SVR: initial condition
 - TCR: represents predicted trajectory
 - TCP+N approach
- No numerical integration
- TSR used when no TCR data
 - Uses numerical integration
- One trajectory per traffic aircraft
 - used for all intent-based CD applications

Conflict Management: Intent-Based Conflict Resolution

- 1. Conflict resolution in strategic flight modes
 - Primary and preferred method for 4D trajectory-based operations
 - Remain fully coupled to FMS
 - Lowest pilot workload
 - Broadcast best intent

2. Conflict resolution in <u>tactical</u> flight modes

- Automatic override of strategic tool for unresolved and pop-up conflicts
- Dynamic head-up situations
 (e.g. tactical weather avoidance)

Conflict Management: Intent-Based Conflict Resolution

- Strategic Intent-based Conflict Resolution (SICR) ۲
 - **Develops FMS-compatible routes**
 - Independent lateral and vertical maneuver options
 - Uploaded directly into FMS
 - Crew requested
 - Approach:
 - Resolves for all conflicts and constraints
 - Non-cooperative (full resolution)
 - Pattern-Based Genetic Algorithm

Conflict Management: Intent-Based Conflict Resolution

- Tactical Intent-based Conflict Resolution (TICR)
 - **Develops MCP setting advisories**
 - Altitude, vertical rate, heading/track
 - Automatic (not crew requested)
 - Approach:

Sweep

Operational Timit

- Resolves for all conflicts
- Non-cooperative (full resolution)
- Sweep until first conflict-free setting found

Conflict Management State-Based Conflict Detection & Resolution

- <u>Independent</u> system from intent-based CD&R
 - Blunder protection and override for short term conflicts
 - Two options
 - Langley (ACCoRD)
 - NLR (Modified Voltage Potential)
- Detection
 - Look-ahead at 5 minutes (configurable)
 - No area hazard detection
 - Does not consider uncertainty
- Resolution
 - Develops MCP settings advisories
 - track/heading, vertical rate, altitude
 - Automatically displayed when needed
 - Approach
 - Resolves most immediate conflict
 - Cooperative/Non-cooperative (configurable)
 - Maneuver to increase to minimum separation standard
 - Implicitly coordinated with other traffic maneuver

Modified Voltage Potential

Maneuvering Without Conflict Conflict Prevention

- Provisional (what-if) planning
 - Non-conflict generated maneuver
 - Probe for conflicts before execution
 - FMS provisional
 - Automatic probe of FMS MOD route
 - MCP provisional
 - Automatic probe of non-active MCP inputs
- Maneuver restriction (MR) bands
 - Protect against unallowable maneuvers
 - Conflicts requiring resolution
 - Bands show unallowable MCP settings
 - Lateral (track/heading)
 - Vertical (vertical rate)
 - Always "On"

Flexibility Planning Complexity Management

- Trajectory Flexibility Preservation
 - Proposed capability under research and development
 - Computes measures of a trajectory's flexibility
 - Adaptability and Robustness
 - Current or any proposed route (e.g. conflict resolution)
 - Long time horizon
 - Reduce or prevent exposure to complex airspace
 - Short time horizon
 - Bias resolutions to "clear air"
 - Reduce proximity to other traffic, weather
- Constraint Minimization
 - Proposed capability under research and development
 - Propose constraint relaxation to maximize flexibility
 - Support air/ground negotiation on trajectory constraints (e.g. RTA)

Airborne flexibility function will question:

Do I have enough flexibility to safely proceed? Can I modify my trajectory to increase my flexibility? Do I need to avoid this airspace entirely and replan?

- Have achieved full integration of TBO functionality in AOP
 - Traffic separation in FMS (4D/strategic) and MCP (3D/tactical) flight modes
 - Intent-based conflict detection with trajectory-based 4D uncertainty bounding
 - Strategic (closed-loop) resolutions: primary operational mode for 4D TBO
 - Tactical (open-loop) override resolutions for short time horizons
 - State-based CD&R for final separation assurance; proven correct and coordinated
 - Strategic reconnect capability (with integrated conflict detection and resolution)
 - Trajectory constraints conformance
 - Flow constraint (RTA conformance; "Resolve RTA conflict" for delay absorption)
 - Weather polygon and airspace restriction (SUA) avoidance
 - Other trajectory constraints (e.g. crossing altitude)
 - Provisional probing for conflict-free trajectory changes
 - "What if" probing in both strategic and tactical modes
 - Coordination with traffic
 - Right-of-way rules integrated into alerting logic
 - Near-term tactical maneuver coordination
 - Optimization of resolutions
 - User preferences in both strategic and tactical modes
- Exploratory integration of complexity management functionality

 Trajectory flexibility quantification and preservation

Accomplishments

- Algorithm performance testing
 - Strategic intent-based CD&R
 - Stress-tested to extreme density (10x +)
 - Randomly generated conflicts, random blocking traffic, altitude constrained, RTA constrained
 - Baseline study: 5700+ conflicts, all resolved
 - Pilot delay study: 5 to 240 seconds, 99%+ conflicts resolved except longest delay at highest density (12x)
 - Wind prediction error study : up to 40 kt error
 - 1X all resolved w/ no buffer required
 - 8x all resolved w/ 60% buffer
 - Tactical intent-based CD&R
 - Initial observations of stress testing indicate strong performance
 - State-based CD&R
 - Formally verified properties of correctness and coordination

Strategic intent-based CD&R stress test NASA Air Traffic Operations Lab Airborne tool: NASA Autonomous Operations Planner All aircraft co-altitude, circle diameter 160 NM Sustained Mean Density¹ 17.18 aircraft per 10k NM² ~9.5X sector ZOA31, FL310, 19 Feb 2004

Accomplishments

- Previous HITL testing:
 - Unconstrained cruise (\rightarrow 3X traffic)
 - Restrictive airspace / hazard scenarios
 - Flow-constrained cruise/descents in mixed-equipage operations (→2x traffic)
- 2010 HITL Experiment
 - First of multiple paired HITL simulations
 - Langley ATOL and Ames AOL platforms
 - Same scenarios, metrics
 - Air/ground function allocation: all airborne or all ground-based (baseline)
 - Study of operational "agility"
 - Coincident timing of multi-aircraft trajectory changes
 - Up to 2x max traffic density, Kansas City Center en-route/transition airspace
 - Metrics: safety, efficiency, usability, acceptability (data analysis in progress)

- Autonomous Operations Planner developed by NASA for research of feasibility and functional requirements of self-separation operations
- Primary requirements addressed
 - <u>Conflict Management</u>
 - Conflict detection accounting for ownship auto-flight mode, traffic intent and state, and prediction uncertainty
 - Conflict resolution alternatives in lateral and vertical directions, and strategic and tactical flight modes
 - <u>Maneuvering without Conflict</u>
 - Provisional capability to verify planned trajectory changes are conflict-free before execution
 - Maneuver restriction bands for quick assessment of tactical options
 - Flexibility Planning
 - Proposed capability under research and development
 - Quantification and preservation of maximum trajectory flexibility
- Use
 - Designed for mixed-equipage airspace, trajectory-based operations, 4D constraints
 - Supports ongoing research in self-separation
 - Dynamic weather, traffic complexity, mixed-equipage (air/ground) operations, failure modes

Thank You

Tutorial on Airborne Self Separation, 4th International Conference on Research in Air Transportation, June 1-4, 2010, Budapest, Hungary